Abstract

We report the design, fabrication and characterization of compact gradual bends for channel plasmon polaritons (CPPs) being excited at telecom wavelengths. We obtain high-quality near-field optical images of CPP modes propagating along a bent V-groove in gold, which indicate good CPP mode confinement in the groove and efficient guiding around the compact S-bend connecting two 5-µm-offset grooves over a distance of 5 µm. Using averaged cross sections of the CPP intensity distributions before and after the S-bend, the total bend loss is evaluated and found to be close to 2.3 dB for the wavelengths in the range of 1430-1640 nm.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Donald L. Lee, Electromagnetic principles of integrated optics (John Wiley & Sons, Inc., New York, 1986).
  2. L. Eldada and L. W. Shacklette, “Advances in polymer integrated optics,” IEEE J. Sel. Top. Quantum Electron. 6, 54–68 (2000).
    [CrossRef]
  3. P. Coudray, P. Etienne, and Y. Moreau, “Integrated optics based on organo-mineral materials,” Material Science in Semiconductor Processing 3, 331–341 (2000).
    [CrossRef]
  4. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, (John Wiley & Sons, Inc., New York, 1991).
    [CrossRef]
  5. H. Raether, Surface Plasmons (Springer-Verlag, Berlin, 1988).
  6. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
    [CrossRef] [PubMed]
  7. S. I. Bozhevolnyi, V. S. Volkov, K. Leosson, and A. Boltasseva, “Bend loss in surface plasmon polariton band-gap structures,” Appl. Phys. Lett. 79, 1076–1078 (2001).
    [CrossRef]
  8. B. Lamprecht, J. R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidji, A. Leitner, F. R. Aussenegg, and J. C. Weeber, “Surface plasmon propagation in microscale metal stripes,” Appl. Phys. Lett. 79, 51 (2001).
    [CrossRef]
  9. S. A. Maier, M. L. Brongersma, P. G. Kirk, S. Meltzer, A. A. G. Reguicha, and H. A. Atwater, “Plasmons-a route to nanoscale optical devices,” Adv. Mater. 13, 1501–1505 (2001).
    [CrossRef]
  10. J. R. Krenn, H. Ditlbacher, G. Schider, A. Hohenau, A. Leitner, and F. R. Aussenegg, “Surface plasmon micro-and nano-optics,” J. Microsc. 209, 167 (2003).
    [CrossRef] [PubMed]
  11. A. Hohenau, J. R. Krenn, A. L. Stepanov, A. Drezet, H. Ditlbacher, B. Steinberg, A. Leitner, and F. R. Aussenegg, “Dielectric optical elements for surface plasmons,” Opt. Lett. 30, 893–895 (2005).
    [CrossRef] [PubMed]
  12. K. Tanaka and M. Tanaka, “Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide,” Appl. Phys. Lett. 82, 1158–1160 (2003).
    [CrossRef]
  13. L. Liu, Z. Han, and S. He, “Novel surface plasmon waveguide for high integration,” Opt. Express 13, 6645–6650 (2005).
    [CrossRef] [PubMed]
  14. H. Gao, H. Shi, C. Wang, C. Du, X. Luo, Q. Deng, Y. Lv, X. Lin, and H. Yao, “Surface plasmon polariton propagation and combination in Y-shaped metallic channels,” Opt. Express 13, 10795–10800 (2005).
    [CrossRef] [PubMed]
  15. J. Q. Lu and A. A. Maradudin, “Channel plasmons,” Phys. Rev. B 42, 11159–11165 (1990).
    [CrossRef]
  16. I. V. Novikov and A. A. Maradudin, “Channel polaritons,” Phys. Rev. B 66, 035403 (2002).
    [CrossRef]
  17. D. F. P. Pile and D. K. Gramotnev, “Channel plasmon-polariton in a triangular groove on a metal surface,” Opt. Lett. 29, 1069–1071 (2004).
    [CrossRef] [PubMed]
  18. D. K. Gramotnev and D. F. P. Pile, “Single-mode subwavelength waveguide with channel plasmonpolaritons in triangular grooves on a metal surface,” Appl. Phys. Lett. 85, 6323–6325 (2004).
    [CrossRef]
  19. D. F. P. Pile and D. K. Gramotnev, “Plasmonic subwavelength waveguides: next to zero losses at sharp bends,” Opt. Lett. 30, 1186–1188 (2005).
    [CrossRef] [PubMed]
  20. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95, 046802 (2005).
    [CrossRef] [PubMed]
  21. V.S. Volkov, S. I. Bozhevolnyi, P.I. Borel, L. H. Frandsen, and M. Kristensen, “Near-field characterization of low-loss photonic crystal waveguides,” Phys. Rev. B,  72, 035118 (2005).
    [CrossRef]
  22. A. Kumar and S. Aditya, “Performance of S-bends for integrated-optic waveguides,” Microwave Opt. Technol. Lett. 19, 289–292 (1998).
    [CrossRef]
  23. I. Bozhevolnyi, V.S. Volkov, T. Søndergaard, A. Boltasseva, P.I. Borel, and M. Kristensen, “Near-field imaging of light propagation in photonic crystal waveguides: Explicit role of Bloch harmonics,” Phys. Rev. B,  66, 235204 (2002).
    [CrossRef]
  24. S. I. Bozhevolnyi, B. Vohnsen, and E. A. Bozhevolnaya, “Transfer functions in collection scanning nearfield optical microscopy,” Opt. Commun. 172, 171–179 (1999).
    [CrossRef]
  25. D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, “Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding,” Appl. Phys. Lett. 87, 061106 1–3 (2005).
    [CrossRef]

2005 (7)

A. Hohenau, J. R. Krenn, A. L. Stepanov, A. Drezet, H. Ditlbacher, B. Steinberg, A. Leitner, and F. R. Aussenegg, “Dielectric optical elements for surface plasmons,” Opt. Lett. 30, 893–895 (2005).
[CrossRef] [PubMed]

L. Liu, Z. Han, and S. He, “Novel surface plasmon waveguide for high integration,” Opt. Express 13, 6645–6650 (2005).
[CrossRef] [PubMed]

H. Gao, H. Shi, C. Wang, C. Du, X. Luo, Q. Deng, Y. Lv, X. Lin, and H. Yao, “Surface plasmon polariton propagation and combination in Y-shaped metallic channels,” Opt. Express 13, 10795–10800 (2005).
[CrossRef] [PubMed]

D. F. P. Pile and D. K. Gramotnev, “Plasmonic subwavelength waveguides: next to zero losses at sharp bends,” Opt. Lett. 30, 1186–1188 (2005).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95, 046802 (2005).
[CrossRef] [PubMed]

V.S. Volkov, S. I. Bozhevolnyi, P.I. Borel, L. H. Frandsen, and M. Kristensen, “Near-field characterization of low-loss photonic crystal waveguides,” Phys. Rev. B,  72, 035118 (2005).
[CrossRef]

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, “Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding,” Appl. Phys. Lett. 87, 061106 1–3 (2005).
[CrossRef]

2004 (2)

D. F. P. Pile and D. K. Gramotnev, “Channel plasmon-polariton in a triangular groove on a metal surface,” Opt. Lett. 29, 1069–1071 (2004).
[CrossRef] [PubMed]

D. K. Gramotnev and D. F. P. Pile, “Single-mode subwavelength waveguide with channel plasmonpolaritons in triangular grooves on a metal surface,” Appl. Phys. Lett. 85, 6323–6325 (2004).
[CrossRef]

2003 (3)

J. R. Krenn, H. Ditlbacher, G. Schider, A. Hohenau, A. Leitner, and F. R. Aussenegg, “Surface plasmon micro-and nano-optics,” J. Microsc. 209, 167 (2003).
[CrossRef] [PubMed]

K. Tanaka and M. Tanaka, “Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide,” Appl. Phys. Lett. 82, 1158–1160 (2003).
[CrossRef]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef] [PubMed]

2002 (2)

I. V. Novikov and A. A. Maradudin, “Channel polaritons,” Phys. Rev. B 66, 035403 (2002).
[CrossRef]

I. Bozhevolnyi, V.S. Volkov, T. Søndergaard, A. Boltasseva, P.I. Borel, and M. Kristensen, “Near-field imaging of light propagation in photonic crystal waveguides: Explicit role of Bloch harmonics,” Phys. Rev. B,  66, 235204 (2002).
[CrossRef]

2001 (3)

S. I. Bozhevolnyi, V. S. Volkov, K. Leosson, and A. Boltasseva, “Bend loss in surface plasmon polariton band-gap structures,” Appl. Phys. Lett. 79, 1076–1078 (2001).
[CrossRef]

B. Lamprecht, J. R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidji, A. Leitner, F. R. Aussenegg, and J. C. Weeber, “Surface plasmon propagation in microscale metal stripes,” Appl. Phys. Lett. 79, 51 (2001).
[CrossRef]

S. A. Maier, M. L. Brongersma, P. G. Kirk, S. Meltzer, A. A. G. Reguicha, and H. A. Atwater, “Plasmons-a route to nanoscale optical devices,” Adv. Mater. 13, 1501–1505 (2001).
[CrossRef]

2000 (2)

L. Eldada and L. W. Shacklette, “Advances in polymer integrated optics,” IEEE J. Sel. Top. Quantum Electron. 6, 54–68 (2000).
[CrossRef]

P. Coudray, P. Etienne, and Y. Moreau, “Integrated optics based on organo-mineral materials,” Material Science in Semiconductor Processing 3, 331–341 (2000).
[CrossRef]

1999 (1)

S. I. Bozhevolnyi, B. Vohnsen, and E. A. Bozhevolnaya, “Transfer functions in collection scanning nearfield optical microscopy,” Opt. Commun. 172, 171–179 (1999).
[CrossRef]

1998 (1)

A. Kumar and S. Aditya, “Performance of S-bends for integrated-optic waveguides,” Microwave Opt. Technol. Lett. 19, 289–292 (1998).
[CrossRef]

1990 (1)

J. Q. Lu and A. A. Maradudin, “Channel plasmons,” Phys. Rev. B 42, 11159–11165 (1990).
[CrossRef]

Aditya, S.

A. Kumar and S. Aditya, “Performance of S-bends for integrated-optic waveguides,” Microwave Opt. Technol. Lett. 19, 289–292 (1998).
[CrossRef]

Atwater, H. A.

S. A. Maier, M. L. Brongersma, P. G. Kirk, S. Meltzer, A. A. G. Reguicha, and H. A. Atwater, “Plasmons-a route to nanoscale optical devices,” Adv. Mater. 13, 1501–1505 (2001).
[CrossRef]

Aussenegg, F. R.

A. Hohenau, J. R. Krenn, A. L. Stepanov, A. Drezet, H. Ditlbacher, B. Steinberg, A. Leitner, and F. R. Aussenegg, “Dielectric optical elements for surface plasmons,” Opt. Lett. 30, 893–895 (2005).
[CrossRef] [PubMed]

J. R. Krenn, H. Ditlbacher, G. Schider, A. Hohenau, A. Leitner, and F. R. Aussenegg, “Surface plasmon micro-and nano-optics,” J. Microsc. 209, 167 (2003).
[CrossRef] [PubMed]

B. Lamprecht, J. R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidji, A. Leitner, F. R. Aussenegg, and J. C. Weeber, “Surface plasmon propagation in microscale metal stripes,” Appl. Phys. Lett. 79, 51 (2001).
[CrossRef]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef] [PubMed]

Boltasseva, A.

I. Bozhevolnyi, V.S. Volkov, T. Søndergaard, A. Boltasseva, P.I. Borel, and M. Kristensen, “Near-field imaging of light propagation in photonic crystal waveguides: Explicit role of Bloch harmonics,” Phys. Rev. B,  66, 235204 (2002).
[CrossRef]

S. I. Bozhevolnyi, V. S. Volkov, K. Leosson, and A. Boltasseva, “Bend loss in surface plasmon polariton band-gap structures,” Appl. Phys. Lett. 79, 1076–1078 (2001).
[CrossRef]

Borel, P.I.

V.S. Volkov, S. I. Bozhevolnyi, P.I. Borel, L. H. Frandsen, and M. Kristensen, “Near-field characterization of low-loss photonic crystal waveguides,” Phys. Rev. B,  72, 035118 (2005).
[CrossRef]

I. Bozhevolnyi, V.S. Volkov, T. Søndergaard, A. Boltasseva, P.I. Borel, and M. Kristensen, “Near-field imaging of light propagation in photonic crystal waveguides: Explicit role of Bloch harmonics,” Phys. Rev. B,  66, 235204 (2002).
[CrossRef]

Bozhevolnaya, E. A.

S. I. Bozhevolnyi, B. Vohnsen, and E. A. Bozhevolnaya, “Transfer functions in collection scanning nearfield optical microscopy,” Opt. Commun. 172, 171–179 (1999).
[CrossRef]

Bozhevolnyi, I.

I. Bozhevolnyi, V.S. Volkov, T. Søndergaard, A. Boltasseva, P.I. Borel, and M. Kristensen, “Near-field imaging of light propagation in photonic crystal waveguides: Explicit role of Bloch harmonics,” Phys. Rev. B,  66, 235204 (2002).
[CrossRef]

Bozhevolnyi, S. I.

V.S. Volkov, S. I. Bozhevolnyi, P.I. Borel, L. H. Frandsen, and M. Kristensen, “Near-field characterization of low-loss photonic crystal waveguides,” Phys. Rev. B,  72, 035118 (2005).
[CrossRef]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95, 046802 (2005).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, K. Leosson, and A. Boltasseva, “Bend loss in surface plasmon polariton band-gap structures,” Appl. Phys. Lett. 79, 1076–1078 (2001).
[CrossRef]

S. I. Bozhevolnyi, B. Vohnsen, and E. A. Bozhevolnaya, “Transfer functions in collection scanning nearfield optical microscopy,” Opt. Commun. 172, 171–179 (1999).
[CrossRef]

Brongersma, M. L.

S. A. Maier, M. L. Brongersma, P. G. Kirk, S. Meltzer, A. A. G. Reguicha, and H. A. Atwater, “Plasmons-a route to nanoscale optical devices,” Adv. Mater. 13, 1501–1505 (2001).
[CrossRef]

Coudray, P.

P. Coudray, P. Etienne, and Y. Moreau, “Integrated optics based on organo-mineral materials,” Material Science in Semiconductor Processing 3, 331–341 (2000).
[CrossRef]

Deng, Q.

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef] [PubMed]

Devaux, E.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95, 046802 (2005).
[CrossRef] [PubMed]

Ditlbacher, H.

A. Hohenau, J. R. Krenn, A. L. Stepanov, A. Drezet, H. Ditlbacher, B. Steinberg, A. Leitner, and F. R. Aussenegg, “Dielectric optical elements for surface plasmons,” Opt. Lett. 30, 893–895 (2005).
[CrossRef] [PubMed]

J. R. Krenn, H. Ditlbacher, G. Schider, A. Hohenau, A. Leitner, and F. R. Aussenegg, “Surface plasmon micro-and nano-optics,” J. Microsc. 209, 167 (2003).
[CrossRef] [PubMed]

B. Lamprecht, J. R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidji, A. Leitner, F. R. Aussenegg, and J. C. Weeber, “Surface plasmon propagation in microscale metal stripes,” Appl. Phys. Lett. 79, 51 (2001).
[CrossRef]

Drezet, A.

Du, C.

Ebbesen, T. W.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95, 046802 (2005).
[CrossRef] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef] [PubMed]

Eldada, L.

L. Eldada and L. W. Shacklette, “Advances in polymer integrated optics,” IEEE J. Sel. Top. Quantum Electron. 6, 54–68 (2000).
[CrossRef]

Etienne, P.

P. Coudray, P. Etienne, and Y. Moreau, “Integrated optics based on organo-mineral materials,” Material Science in Semiconductor Processing 3, 331–341 (2000).
[CrossRef]

Felidji, N.

B. Lamprecht, J. R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidji, A. Leitner, F. R. Aussenegg, and J. C. Weeber, “Surface plasmon propagation in microscale metal stripes,” Appl. Phys. Lett. 79, 51 (2001).
[CrossRef]

Frandsen, L. H.

V.S. Volkov, S. I. Bozhevolnyi, P.I. Borel, L. H. Frandsen, and M. Kristensen, “Near-field characterization of low-loss photonic crystal waveguides,” Phys. Rev. B,  72, 035118 (2005).
[CrossRef]

Fukui, M.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, “Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding,” Appl. Phys. Lett. 87, 061106 1–3 (2005).
[CrossRef]

Gao, H.

Gramotnev, D. K.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, “Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding,” Appl. Phys. Lett. 87, 061106 1–3 (2005).
[CrossRef]

D. F. P. Pile and D. K. Gramotnev, “Plasmonic subwavelength waveguides: next to zero losses at sharp bends,” Opt. Lett. 30, 1186–1188 (2005).
[CrossRef] [PubMed]

D. F. P. Pile and D. K. Gramotnev, “Channel plasmon-polariton in a triangular groove on a metal surface,” Opt. Lett. 29, 1069–1071 (2004).
[CrossRef] [PubMed]

D. K. Gramotnev and D. F. P. Pile, “Single-mode subwavelength waveguide with channel plasmonpolaritons in triangular grooves on a metal surface,” Appl. Phys. Lett. 85, 6323–6325 (2004).
[CrossRef]

Han, Z.

Haraguchi, M.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, “Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding,” Appl. Phys. Lett. 87, 061106 1–3 (2005).
[CrossRef]

He, S.

Hohenau, A.

A. Hohenau, J. R. Krenn, A. L. Stepanov, A. Drezet, H. Ditlbacher, B. Steinberg, A. Leitner, and F. R. Aussenegg, “Dielectric optical elements for surface plasmons,” Opt. Lett. 30, 893–895 (2005).
[CrossRef] [PubMed]

J. R. Krenn, H. Ditlbacher, G. Schider, A. Hohenau, A. Leitner, and F. R. Aussenegg, “Surface plasmon micro-and nano-optics,” J. Microsc. 209, 167 (2003).
[CrossRef] [PubMed]

Kirk, P. G.

S. A. Maier, M. L. Brongersma, P. G. Kirk, S. Meltzer, A. A. G. Reguicha, and H. A. Atwater, “Plasmons-a route to nanoscale optical devices,” Adv. Mater. 13, 1501–1505 (2001).
[CrossRef]

Krenn, J. R.

A. Hohenau, J. R. Krenn, A. L. Stepanov, A. Drezet, H. Ditlbacher, B. Steinberg, A. Leitner, and F. R. Aussenegg, “Dielectric optical elements for surface plasmons,” Opt. Lett. 30, 893–895 (2005).
[CrossRef] [PubMed]

J. R. Krenn, H. Ditlbacher, G. Schider, A. Hohenau, A. Leitner, and F. R. Aussenegg, “Surface plasmon micro-and nano-optics,” J. Microsc. 209, 167 (2003).
[CrossRef] [PubMed]

B. Lamprecht, J. R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidji, A. Leitner, F. R. Aussenegg, and J. C. Weeber, “Surface plasmon propagation in microscale metal stripes,” Appl. Phys. Lett. 79, 51 (2001).
[CrossRef]

Kristensen, M.

V.S. Volkov, S. I. Bozhevolnyi, P.I. Borel, L. H. Frandsen, and M. Kristensen, “Near-field characterization of low-loss photonic crystal waveguides,” Phys. Rev. B,  72, 035118 (2005).
[CrossRef]

I. Bozhevolnyi, V.S. Volkov, T. Søndergaard, A. Boltasseva, P.I. Borel, and M. Kristensen, “Near-field imaging of light propagation in photonic crystal waveguides: Explicit role of Bloch harmonics,” Phys. Rev. B,  66, 235204 (2002).
[CrossRef]

Kumar, A.

A. Kumar and S. Aditya, “Performance of S-bends for integrated-optic waveguides,” Microwave Opt. Technol. Lett. 19, 289–292 (1998).
[CrossRef]

Lamprecht, B.

B. Lamprecht, J. R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidji, A. Leitner, F. R. Aussenegg, and J. C. Weeber, “Surface plasmon propagation in microscale metal stripes,” Appl. Phys. Lett. 79, 51 (2001).
[CrossRef]

Lee, Donald L.

Donald L. Lee, Electromagnetic principles of integrated optics (John Wiley & Sons, Inc., New York, 1986).

Leitner, A.

A. Hohenau, J. R. Krenn, A. L. Stepanov, A. Drezet, H. Ditlbacher, B. Steinberg, A. Leitner, and F. R. Aussenegg, “Dielectric optical elements for surface plasmons,” Opt. Lett. 30, 893–895 (2005).
[CrossRef] [PubMed]

J. R. Krenn, H. Ditlbacher, G. Schider, A. Hohenau, A. Leitner, and F. R. Aussenegg, “Surface plasmon micro-and nano-optics,” J. Microsc. 209, 167 (2003).
[CrossRef] [PubMed]

B. Lamprecht, J. R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidji, A. Leitner, F. R. Aussenegg, and J. C. Weeber, “Surface plasmon propagation in microscale metal stripes,” Appl. Phys. Lett. 79, 51 (2001).
[CrossRef]

Leosson, K.

S. I. Bozhevolnyi, V. S. Volkov, K. Leosson, and A. Boltasseva, “Bend loss in surface plasmon polariton band-gap structures,” Appl. Phys. Lett. 79, 1076–1078 (2001).
[CrossRef]

Lin, X.

Liu, L.

Lu, J. Q.

J. Q. Lu and A. A. Maradudin, “Channel plasmons,” Phys. Rev. B 42, 11159–11165 (1990).
[CrossRef]

Luo, X.

Lv, Y.

Maier, S. A.

S. A. Maier, M. L. Brongersma, P. G. Kirk, S. Meltzer, A. A. G. Reguicha, and H. A. Atwater, “Plasmons-a route to nanoscale optical devices,” Adv. Mater. 13, 1501–1505 (2001).
[CrossRef]

Maradudin, A. A.

I. V. Novikov and A. A. Maradudin, “Channel polaritons,” Phys. Rev. B 66, 035403 (2002).
[CrossRef]

J. Q. Lu and A. A. Maradudin, “Channel plasmons,” Phys. Rev. B 42, 11159–11165 (1990).
[CrossRef]

Matsuo, S.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, “Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding,” Appl. Phys. Lett. 87, 061106 1–3 (2005).
[CrossRef]

Meltzer, S.

S. A. Maier, M. L. Brongersma, P. G. Kirk, S. Meltzer, A. A. G. Reguicha, and H. A. Atwater, “Plasmons-a route to nanoscale optical devices,” Adv. Mater. 13, 1501–1505 (2001).
[CrossRef]

Moreau, Y.

P. Coudray, P. Etienne, and Y. Moreau, “Integrated optics based on organo-mineral materials,” Material Science in Semiconductor Processing 3, 331–341 (2000).
[CrossRef]

Novikov, I. V.

I. V. Novikov and A. A. Maradudin, “Channel polaritons,” Phys. Rev. B 66, 035403 (2002).
[CrossRef]

Ogawa, T.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, “Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding,” Appl. Phys. Lett. 87, 061106 1–3 (2005).
[CrossRef]

Okamoto, T.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, “Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding,” Appl. Phys. Lett. 87, 061106 1–3 (2005).
[CrossRef]

Pile, D. F. P.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, “Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding,” Appl. Phys. Lett. 87, 061106 1–3 (2005).
[CrossRef]

D. F. P. Pile and D. K. Gramotnev, “Plasmonic subwavelength waveguides: next to zero losses at sharp bends,” Opt. Lett. 30, 1186–1188 (2005).
[CrossRef] [PubMed]

D. F. P. Pile and D. K. Gramotnev, “Channel plasmon-polariton in a triangular groove on a metal surface,” Opt. Lett. 29, 1069–1071 (2004).
[CrossRef] [PubMed]

D. K. Gramotnev and D. F. P. Pile, “Single-mode subwavelength waveguide with channel plasmonpolaritons in triangular grooves on a metal surface,” Appl. Phys. Lett. 85, 6323–6325 (2004).
[CrossRef]

Raether, H.

H. Raether, Surface Plasmons (Springer-Verlag, Berlin, 1988).

Reguicha, A. A. G.

S. A. Maier, M. L. Brongersma, P. G. Kirk, S. Meltzer, A. A. G. Reguicha, and H. A. Atwater, “Plasmons-a route to nanoscale optical devices,” Adv. Mater. 13, 1501–1505 (2001).
[CrossRef]

Saleh, B. E. A.

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, (John Wiley & Sons, Inc., New York, 1991).
[CrossRef]

Salerno, M.

B. Lamprecht, J. R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidji, A. Leitner, F. R. Aussenegg, and J. C. Weeber, “Surface plasmon propagation in microscale metal stripes,” Appl. Phys. Lett. 79, 51 (2001).
[CrossRef]

Schider, G.

J. R. Krenn, H. Ditlbacher, G. Schider, A. Hohenau, A. Leitner, and F. R. Aussenegg, “Surface plasmon micro-and nano-optics,” J. Microsc. 209, 167 (2003).
[CrossRef] [PubMed]

B. Lamprecht, J. R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidji, A. Leitner, F. R. Aussenegg, and J. C. Weeber, “Surface plasmon propagation in microscale metal stripes,” Appl. Phys. Lett. 79, 51 (2001).
[CrossRef]

Shacklette, L. W.

L. Eldada and L. W. Shacklette, “Advances in polymer integrated optics,” IEEE J. Sel. Top. Quantum Electron. 6, 54–68 (2000).
[CrossRef]

Shi, H.

Søndergaard, T.

I. Bozhevolnyi, V.S. Volkov, T. Søndergaard, A. Boltasseva, P.I. Borel, and M. Kristensen, “Near-field imaging of light propagation in photonic crystal waveguides: Explicit role of Bloch harmonics,” Phys. Rev. B,  66, 235204 (2002).
[CrossRef]

Steinberg, B.

Stepanov, A. L.

Tanaka, K.

K. Tanaka and M. Tanaka, “Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide,” Appl. Phys. Lett. 82, 1158–1160 (2003).
[CrossRef]

Tanaka, M.

K. Tanaka and M. Tanaka, “Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide,” Appl. Phys. Lett. 82, 1158–1160 (2003).
[CrossRef]

Teich, M. C.

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, (John Wiley & Sons, Inc., New York, 1991).
[CrossRef]

Vohnsen, B.

S. I. Bozhevolnyi, B. Vohnsen, and E. A. Bozhevolnaya, “Transfer functions in collection scanning nearfield optical microscopy,” Opt. Commun. 172, 171–179 (1999).
[CrossRef]

Volkov, V. S.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95, 046802 (2005).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, K. Leosson, and A. Boltasseva, “Bend loss in surface plasmon polariton band-gap structures,” Appl. Phys. Lett. 79, 1076–1078 (2001).
[CrossRef]

Volkov, V.S.

V.S. Volkov, S. I. Bozhevolnyi, P.I. Borel, L. H. Frandsen, and M. Kristensen, “Near-field characterization of low-loss photonic crystal waveguides,” Phys. Rev. B,  72, 035118 (2005).
[CrossRef]

I. Bozhevolnyi, V.S. Volkov, T. Søndergaard, A. Boltasseva, P.I. Borel, and M. Kristensen, “Near-field imaging of light propagation in photonic crystal waveguides: Explicit role of Bloch harmonics,” Phys. Rev. B,  66, 235204 (2002).
[CrossRef]

Wang, C.

Weeber, J. C.

B. Lamprecht, J. R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidji, A. Leitner, F. R. Aussenegg, and J. C. Weeber, “Surface plasmon propagation in microscale metal stripes,” Appl. Phys. Lett. 79, 51 (2001).
[CrossRef]

Yao, H.

Adv. Mater. (1)

S. A. Maier, M. L. Brongersma, P. G. Kirk, S. Meltzer, A. A. G. Reguicha, and H. A. Atwater, “Plasmons-a route to nanoscale optical devices,” Adv. Mater. 13, 1501–1505 (2001).
[CrossRef]

Appl. Phys. Lett. (5)

D. K. Gramotnev and D. F. P. Pile, “Single-mode subwavelength waveguide with channel plasmonpolaritons in triangular grooves on a metal surface,” Appl. Phys. Lett. 85, 6323–6325 (2004).
[CrossRef]

K. Tanaka and M. Tanaka, “Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide,” Appl. Phys. Lett. 82, 1158–1160 (2003).
[CrossRef]

S. I. Bozhevolnyi, V. S. Volkov, K. Leosson, and A. Boltasseva, “Bend loss in surface plasmon polariton band-gap structures,” Appl. Phys. Lett. 79, 1076–1078 (2001).
[CrossRef]

B. Lamprecht, J. R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidji, A. Leitner, F. R. Aussenegg, and J. C. Weeber, “Surface plasmon propagation in microscale metal stripes,” Appl. Phys. Lett. 79, 51 (2001).
[CrossRef]

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, “Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding,” Appl. Phys. Lett. 87, 061106 1–3 (2005).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

L. Eldada and L. W. Shacklette, “Advances in polymer integrated optics,” IEEE J. Sel. Top. Quantum Electron. 6, 54–68 (2000).
[CrossRef]

J. Microsc. (1)

J. R. Krenn, H. Ditlbacher, G. Schider, A. Hohenau, A. Leitner, and F. R. Aussenegg, “Surface plasmon micro-and nano-optics,” J. Microsc. 209, 167 (2003).
[CrossRef] [PubMed]

Material Science in Semiconductor Processing (1)

P. Coudray, P. Etienne, and Y. Moreau, “Integrated optics based on organo-mineral materials,” Material Science in Semiconductor Processing 3, 331–341 (2000).
[CrossRef]

Microwave Opt. Technol. Lett. (1)

A. Kumar and S. Aditya, “Performance of S-bends for integrated-optic waveguides,” Microwave Opt. Technol. Lett. 19, 289–292 (1998).
[CrossRef]

Nature (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef] [PubMed]

Opt. Commun. (1)

S. I. Bozhevolnyi, B. Vohnsen, and E. A. Bozhevolnaya, “Transfer functions in collection scanning nearfield optical microscopy,” Opt. Commun. 172, 171–179 (1999).
[CrossRef]

Opt. Express (2)

Opt. Lett. (3)

Phys. Rev. B (4)

V.S. Volkov, S. I. Bozhevolnyi, P.I. Borel, L. H. Frandsen, and M. Kristensen, “Near-field characterization of low-loss photonic crystal waveguides,” Phys. Rev. B,  72, 035118 (2005).
[CrossRef]

I. Bozhevolnyi, V.S. Volkov, T. Søndergaard, A. Boltasseva, P.I. Borel, and M. Kristensen, “Near-field imaging of light propagation in photonic crystal waveguides: Explicit role of Bloch harmonics,” Phys. Rev. B,  66, 235204 (2002).
[CrossRef]

J. Q. Lu and A. A. Maradudin, “Channel plasmons,” Phys. Rev. B 42, 11159–11165 (1990).
[CrossRef]

I. V. Novikov and A. A. Maradudin, “Channel polaritons,” Phys. Rev. B 66, 035403 (2002).
[CrossRef]

Phys. Rev. Lett. (1)

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95, 046802 (2005).
[CrossRef] [PubMed]

Other (3)

Donald L. Lee, Electromagnetic principles of integrated optics (John Wiley & Sons, Inc., New York, 1986).

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, (John Wiley & Sons, Inc., New York, 1991).
[CrossRef]

H. Raether, Surface Plasmons (Springer-Verlag, Berlin, 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Schematic layout of the experimental setup.

Fig. 2.
Fig. 2.

Scanning electron microscope images of groove (a) and S-bend (b). Optical microscope images of (c) the coupling arrangement and (d) the light propagation (λ=1.55 µm) along the groove.

Fig. 3.
Fig. 3.

Pseudo-color (a) topographical and near-field optical images (24×9 µm2) obtained at the wavelength λ≅(b) 1430, (c) 1500, (d) 1600, and (e) 1640 nm with the CPP propagating along the bent subwavelength groove.

Fig. 4.
Fig. 4.

(a) The schematic of an S-bend. The magenta lines correspond to approximate positions of the lateral cross sections taken before “In” and after “Out” the S-bend. The red arrows indicate the CPP propagation direction. (b) Average cross sections of the intensity distributions in the bent groove before and after the S-bend corresponding to the optical images shown in Fig. 3.

Fig. 5.
Fig. 5.

Total insertion loss determined from cross sections of the near-field optical images (see Fig. 3) together with the propagation loss calculated for the 12-µm-long groove region shown in Fig. 4(a) as a hatched groove area and corresponding bend loss as functions of the light wavelength

Fig. 6.
Fig. 6.

Pseudo-color (a) topographical and (b-e) near-field optical images (24×9 µm2) obtained at the wavelength λ≅1620 nm for different adjustments of the in-coupling fiber (along the sample facet) with respect to the groove center. The in-coupling fiber was: (b) correctly aligned and centered to the groove; (c)~150 nm moved; (d)~250 nm moved; (e)~500 nm moved. The images are oriented in the way that the in-coupling fiber was moved upwards in the vertical direction.

Fig. 7.
Fig. 7.

Average cross sections of the intensity distributions across the groove before and after the S-bend corresponding to the optical images shown in Fig. 6.

Metrics