Abstract

Generation and modulation of circularly polarized terahertz electromagnetic radiation have been demonstrated by using a four-contact photoconductive antenna and a total-reflection Si prism. The quality of the circularly polarized terahertz pulsed radiation has been evaluated by using a polarization sensitive terahertz time-domain spectroscopy system. The characteristic of the dynamic modulation between the left and right circularly polarized states of the THz radiation is also evaluated. The ellipticity of the modulated circularly polarized THz radiation without a polarizer is not as good as that of the non-modulated because of the non-uniform bias field distribution and the asymmetric pump laser intensity profile on the photoconductive gap.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. A. Nafie, “INFRARED AND RAMAN VIBRATIONAL OPTICAL ACTIVITY: Theoretical and Experimental Aspects,” Annu. Rev. Phys. Chem. 48, 357 (1997).
    [Crossref] [PubMed]
  2. P. Pancoska, E. Bitto, V. Janota, and T. A. Keiderling, “Quantitative analysis of vibrational circular dichroism spectra of proteins. Problems and perspectives,” Faraday Discuss. 99, 287 (1994).
    [Crossref] [PubMed]
  3. P. Pancoska, H. Fabian, G. Yoder, V. Baumruk, and T. A. Keiderling, “Protein Structural Segments and Their Interconnections Derived from Optical Spectra. Thermal Unfolding of Ribonuclease T1 as an Example,” Biochemistry 35, 13094 (1996).
    [Crossref] [PubMed]
  4. T. B. Freedman, N. Ragunathan, and Susan Alexander, “Vibrational circular dichroism in ephedra molecules. Experimental measurement and ab initio calculation,” Faraday Discuss. 99, 131 (1994).
    [Crossref] [PubMed]
  5. J. McCann, A. Rauk, G. V. Shustov, H. Wieser, and D. Yang, “Electronic and Vibrational Circular Dichroism of Model β-Lactams: 3-Methyl- and 4-Methylazetidin-2-one,” Appl. Spectrosc. 50, 630 (1996).
    [Crossref]
  6. Q. Chen and X.-C. Zhang, “Polarization modulation in optoelectronic generation and detection of terahertz beams,” Appl. Phys. Lett. 74, 3435 (1999).
    [Crossref]
  7. R. Shimano, H. Nishimura, and T. Sato, “Frequency Tunable Circular Polarization Control of Terahertz Radiation,” Jpn. J. Appl. Phys. 44, L676 (2005).
    [Crossref]
  8. E. Castro-Camus, J. Lloyd-Hughes, M. B. Johnston, M. D. Fraser, H. H. Tan, and C. Jagadish, “Polarization-sensitive terahertz detection by multicontact photoconductive receivers,” Appl. Phys. Lett. 86, 254102 (2005).
    [Crossref]
  9. M. Tani, S. Matsuura, K. Sakai, and S. Nakashima, “Emission characteristics of photoconductive antennas based on low-temperature-grown GaAs and semi-insulating GaAs,” Appl. Opt. 36, 7853 (1997).
    [Crossref]
  10. W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, NUMERICAL RECIPES in C (Cambridge University, Cambridge, England, 1988), Chap. 19.
  11. T. Nagashima and M. Hangyo, “Measurement of complex optical constants of a highly doped Si wafer using terahertz ellipsometry,” Appl. Phys. Lett.,  79, 3917 (2001).
    [Crossref]

2005 (2)

R. Shimano, H. Nishimura, and T. Sato, “Frequency Tunable Circular Polarization Control of Terahertz Radiation,” Jpn. J. Appl. Phys. 44, L676 (2005).
[Crossref]

E. Castro-Camus, J. Lloyd-Hughes, M. B. Johnston, M. D. Fraser, H. H. Tan, and C. Jagadish, “Polarization-sensitive terahertz detection by multicontact photoconductive receivers,” Appl. Phys. Lett. 86, 254102 (2005).
[Crossref]

2001 (1)

T. Nagashima and M. Hangyo, “Measurement of complex optical constants of a highly doped Si wafer using terahertz ellipsometry,” Appl. Phys. Lett.,  79, 3917 (2001).
[Crossref]

1999 (1)

Q. Chen and X.-C. Zhang, “Polarization modulation in optoelectronic generation and detection of terahertz beams,” Appl. Phys. Lett. 74, 3435 (1999).
[Crossref]

1997 (2)

1996 (2)

P. Pancoska, H. Fabian, G. Yoder, V. Baumruk, and T. A. Keiderling, “Protein Structural Segments and Their Interconnections Derived from Optical Spectra. Thermal Unfolding of Ribonuclease T1 as an Example,” Biochemistry 35, 13094 (1996).
[Crossref] [PubMed]

J. McCann, A. Rauk, G. V. Shustov, H. Wieser, and D. Yang, “Electronic and Vibrational Circular Dichroism of Model β-Lactams: 3-Methyl- and 4-Methylazetidin-2-one,” Appl. Spectrosc. 50, 630 (1996).
[Crossref]

1994 (2)

T. B. Freedman, N. Ragunathan, and Susan Alexander, “Vibrational circular dichroism in ephedra molecules. Experimental measurement and ab initio calculation,” Faraday Discuss. 99, 131 (1994).
[Crossref] [PubMed]

P. Pancoska, E. Bitto, V. Janota, and T. A. Keiderling, “Quantitative analysis of vibrational circular dichroism spectra of proteins. Problems and perspectives,” Faraday Discuss. 99, 287 (1994).
[Crossref] [PubMed]

Alexander, Susan

T. B. Freedman, N. Ragunathan, and Susan Alexander, “Vibrational circular dichroism in ephedra molecules. Experimental measurement and ab initio calculation,” Faraday Discuss. 99, 131 (1994).
[Crossref] [PubMed]

Baumruk, V.

P. Pancoska, H. Fabian, G. Yoder, V. Baumruk, and T. A. Keiderling, “Protein Structural Segments and Their Interconnections Derived from Optical Spectra. Thermal Unfolding of Ribonuclease T1 as an Example,” Biochemistry 35, 13094 (1996).
[Crossref] [PubMed]

Bitto, E.

P. Pancoska, E. Bitto, V. Janota, and T. A. Keiderling, “Quantitative analysis of vibrational circular dichroism spectra of proteins. Problems and perspectives,” Faraday Discuss. 99, 287 (1994).
[Crossref] [PubMed]

Castro-Camus, E.

E. Castro-Camus, J. Lloyd-Hughes, M. B. Johnston, M. D. Fraser, H. H. Tan, and C. Jagadish, “Polarization-sensitive terahertz detection by multicontact photoconductive receivers,” Appl. Phys. Lett. 86, 254102 (2005).
[Crossref]

Chen, Q.

Q. Chen and X.-C. Zhang, “Polarization modulation in optoelectronic generation and detection of terahertz beams,” Appl. Phys. Lett. 74, 3435 (1999).
[Crossref]

Fabian, H.

P. Pancoska, H. Fabian, G. Yoder, V. Baumruk, and T. A. Keiderling, “Protein Structural Segments and Their Interconnections Derived from Optical Spectra. Thermal Unfolding of Ribonuclease T1 as an Example,” Biochemistry 35, 13094 (1996).
[Crossref] [PubMed]

Flannery, B. P.

W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, NUMERICAL RECIPES in C (Cambridge University, Cambridge, England, 1988), Chap. 19.

Fraser, M. D.

E. Castro-Camus, J. Lloyd-Hughes, M. B. Johnston, M. D. Fraser, H. H. Tan, and C. Jagadish, “Polarization-sensitive terahertz detection by multicontact photoconductive receivers,” Appl. Phys. Lett. 86, 254102 (2005).
[Crossref]

Freedman, T. B.

T. B. Freedman, N. Ragunathan, and Susan Alexander, “Vibrational circular dichroism in ephedra molecules. Experimental measurement and ab initio calculation,” Faraday Discuss. 99, 131 (1994).
[Crossref] [PubMed]

Hangyo, M.

T. Nagashima and M. Hangyo, “Measurement of complex optical constants of a highly doped Si wafer using terahertz ellipsometry,” Appl. Phys. Lett.,  79, 3917 (2001).
[Crossref]

Jagadish, C.

E. Castro-Camus, J. Lloyd-Hughes, M. B. Johnston, M. D. Fraser, H. H. Tan, and C. Jagadish, “Polarization-sensitive terahertz detection by multicontact photoconductive receivers,” Appl. Phys. Lett. 86, 254102 (2005).
[Crossref]

Janota, V.

P. Pancoska, E. Bitto, V. Janota, and T. A. Keiderling, “Quantitative analysis of vibrational circular dichroism spectra of proteins. Problems and perspectives,” Faraday Discuss. 99, 287 (1994).
[Crossref] [PubMed]

Johnston, M. B.

E. Castro-Camus, J. Lloyd-Hughes, M. B. Johnston, M. D. Fraser, H. H. Tan, and C. Jagadish, “Polarization-sensitive terahertz detection by multicontact photoconductive receivers,” Appl. Phys. Lett. 86, 254102 (2005).
[Crossref]

Keiderling, T. A.

P. Pancoska, H. Fabian, G. Yoder, V. Baumruk, and T. A. Keiderling, “Protein Structural Segments and Their Interconnections Derived from Optical Spectra. Thermal Unfolding of Ribonuclease T1 as an Example,” Biochemistry 35, 13094 (1996).
[Crossref] [PubMed]

P. Pancoska, E. Bitto, V. Janota, and T. A. Keiderling, “Quantitative analysis of vibrational circular dichroism spectra of proteins. Problems and perspectives,” Faraday Discuss. 99, 287 (1994).
[Crossref] [PubMed]

Lloyd-Hughes, J.

E. Castro-Camus, J. Lloyd-Hughes, M. B. Johnston, M. D. Fraser, H. H. Tan, and C. Jagadish, “Polarization-sensitive terahertz detection by multicontact photoconductive receivers,” Appl. Phys. Lett. 86, 254102 (2005).
[Crossref]

Matsuura, S.

McCann, J.

Nafie, L. A.

L. A. Nafie, “INFRARED AND RAMAN VIBRATIONAL OPTICAL ACTIVITY: Theoretical and Experimental Aspects,” Annu. Rev. Phys. Chem. 48, 357 (1997).
[Crossref] [PubMed]

Nagashima, T.

T. Nagashima and M. Hangyo, “Measurement of complex optical constants of a highly doped Si wafer using terahertz ellipsometry,” Appl. Phys. Lett.,  79, 3917 (2001).
[Crossref]

Nakashima, S.

Nishimura, H.

R. Shimano, H. Nishimura, and T. Sato, “Frequency Tunable Circular Polarization Control of Terahertz Radiation,” Jpn. J. Appl. Phys. 44, L676 (2005).
[Crossref]

Pancoska, P.

P. Pancoska, H. Fabian, G. Yoder, V. Baumruk, and T. A. Keiderling, “Protein Structural Segments and Their Interconnections Derived from Optical Spectra. Thermal Unfolding of Ribonuclease T1 as an Example,” Biochemistry 35, 13094 (1996).
[Crossref] [PubMed]

P. Pancoska, E. Bitto, V. Janota, and T. A. Keiderling, “Quantitative analysis of vibrational circular dichroism spectra of proteins. Problems and perspectives,” Faraday Discuss. 99, 287 (1994).
[Crossref] [PubMed]

Press, W. H.

W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, NUMERICAL RECIPES in C (Cambridge University, Cambridge, England, 1988), Chap. 19.

Ragunathan, N.

T. B. Freedman, N. Ragunathan, and Susan Alexander, “Vibrational circular dichroism in ephedra molecules. Experimental measurement and ab initio calculation,” Faraday Discuss. 99, 131 (1994).
[Crossref] [PubMed]

Rauk, A.

Sakai, K.

Sato, T.

R. Shimano, H. Nishimura, and T. Sato, “Frequency Tunable Circular Polarization Control of Terahertz Radiation,” Jpn. J. Appl. Phys. 44, L676 (2005).
[Crossref]

Shimano, R.

R. Shimano, H. Nishimura, and T. Sato, “Frequency Tunable Circular Polarization Control of Terahertz Radiation,” Jpn. J. Appl. Phys. 44, L676 (2005).
[Crossref]

Shustov, G. V.

Tan, H. H.

E. Castro-Camus, J. Lloyd-Hughes, M. B. Johnston, M. D. Fraser, H. H. Tan, and C. Jagadish, “Polarization-sensitive terahertz detection by multicontact photoconductive receivers,” Appl. Phys. Lett. 86, 254102 (2005).
[Crossref]

Tani, M.

Teukolsky, S. A.

W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, NUMERICAL RECIPES in C (Cambridge University, Cambridge, England, 1988), Chap. 19.

Vetterling, W. T.

W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, NUMERICAL RECIPES in C (Cambridge University, Cambridge, England, 1988), Chap. 19.

Wieser, H.

Yang, D.

Yoder, G.

P. Pancoska, H. Fabian, G. Yoder, V. Baumruk, and T. A. Keiderling, “Protein Structural Segments and Their Interconnections Derived from Optical Spectra. Thermal Unfolding of Ribonuclease T1 as an Example,” Biochemistry 35, 13094 (1996).
[Crossref] [PubMed]

Zhang, X.-C.

Q. Chen and X.-C. Zhang, “Polarization modulation in optoelectronic generation and detection of terahertz beams,” Appl. Phys. Lett. 74, 3435 (1999).
[Crossref]

Annu. Rev. Phys. Chem. (1)

L. A. Nafie, “INFRARED AND RAMAN VIBRATIONAL OPTICAL ACTIVITY: Theoretical and Experimental Aspects,” Annu. Rev. Phys. Chem. 48, 357 (1997).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (3)

T. Nagashima and M. Hangyo, “Measurement of complex optical constants of a highly doped Si wafer using terahertz ellipsometry,” Appl. Phys. Lett.,  79, 3917 (2001).
[Crossref]

Q. Chen and X.-C. Zhang, “Polarization modulation in optoelectronic generation and detection of terahertz beams,” Appl. Phys. Lett. 74, 3435 (1999).
[Crossref]

E. Castro-Camus, J. Lloyd-Hughes, M. B. Johnston, M. D. Fraser, H. H. Tan, and C. Jagadish, “Polarization-sensitive terahertz detection by multicontact photoconductive receivers,” Appl. Phys. Lett. 86, 254102 (2005).
[Crossref]

Appl. Spectrosc. (1)

Biochemistry (1)

P. Pancoska, H. Fabian, G. Yoder, V. Baumruk, and T. A. Keiderling, “Protein Structural Segments and Their Interconnections Derived from Optical Spectra. Thermal Unfolding of Ribonuclease T1 as an Example,” Biochemistry 35, 13094 (1996).
[Crossref] [PubMed]

Faraday Discuss. (2)

T. B. Freedman, N. Ragunathan, and Susan Alexander, “Vibrational circular dichroism in ephedra molecules. Experimental measurement and ab initio calculation,” Faraday Discuss. 99, 131 (1994).
[Crossref] [PubMed]

P. Pancoska, E. Bitto, V. Janota, and T. A. Keiderling, “Quantitative analysis of vibrational circular dichroism spectra of proteins. Problems and perspectives,” Faraday Discuss. 99, 287 (1994).
[Crossref] [PubMed]

Jpn. J. Appl. Phys. (1)

R. Shimano, H. Nishimura, and T. Sato, “Frequency Tunable Circular Polarization Control of Terahertz Radiation,” Jpn. J. Appl. Phys. 44, L676 (2005).
[Crossref]

Other (1)

W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, NUMERICAL RECIPES in C (Cambridge University, Cambridge, England, 1988), Chap. 19.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

A microscope view of the four-contact PC antenna. The magnified view of the center part is shown on the lower left.

Fig.. 2.
Fig.. 2.

Setup for the linear-to-circularly polarized THz radiation conversion using the total reflection in the Si prism.

Fig.. 3.
Fig.. 3.

The experimental setup for the generation and detection of circularly polarized THz radiation modulated with the four-contact PC antenna and the Si prism.

Fig. 4.
Fig. 4.

The trajectories of the electric field vectors for the (a) +45°-linear radiation, (b) the -45°-linear radiation, (c) the left circularly polarized components of the modulated radiation, and (d) the right circularly polarized components of the modulated radiation.

Fig. 5.
Fig. 5.

The ellipticities of the orthogonal two linearly polarized THz radiations (solid and open squares), those of the left and right circularly polarized THz radiations with a linear- polarizer (solid and open triangles), and those of the left and right circularly polarized components of the modulated THz radiations without a linear-polarizer (solid and open circles).

Fig. 6.
Fig. 6.

The azimuthal angle of electric field (polarization axis) component for each frequency of the two linearly polarized THz radiations.

Fig. 7.
Fig. 7.

The electric field distribution on the photoconductive gap by simulation. The length of the arrow indicates the strength of the field.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

( 2 x 2 + 2 y 2 ) u ( x , y ) = ρ ( x , y ) = 0 ,
u i + 1 , j + u i 1 , j + u i , j + 1 + u i , j 1 4 u i , j = 0 .
E x i + 1 2 , j + 1 2 = u i , j + u i , j + 1 u i + 1 , j u i + 1 , j + 1 2 Δ
E y i + 1 2 , j + 1 2 = u i , j + u i , j + 1 + u i + 1 , j u i + 1 , j + 1 2 Δ .

Metrics