Abstract

Optical frequency domain imaging (OFDI) using swept laser sources is an emerging second-generation method for optical coherence tomography (OCT). Despite the widespread use of conventional OCT for retinal disease diagnostics, until now imaging the posterior eye segment with OFDI has not been possible. Here we report the development of a highperformance swept laser at 1050 nm and an ophthalmic OFDI system that offers an A-line rate of 18.8 kHz, sensitivity of >92 dB over a depth range of 2.4 mm with an optical exposure level of 550 µW, and deep penetration into the choroid. Using these new technologies, we demonstrate comprehensive human retina, optic disc, and choroid imaging in vivo. This advance enables us to view choroidal vasculature in vivo without intravenous injection of fluorescent dyes and may provide a useful tool for evaluating choroidal as well as retinal diseases.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, "Optical coherence tomography - principles and applications," Rep. Prog. Phys. 66, 239-303 (2003).
    [CrossRef]
  2. S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, "Optical coherence tomography using a frequency-tunable optical source," Opt. Lett. 22, 340-342 (1997).
    [CrossRef] [PubMed]
  3. S. H. Yun, G. J. Tearney, J. F. de Boer, N. Iftimia, and B. E. Bouma, "High-speed optical frequency-domain imaging," Opt. Express 11, 2953-2963 (2003),
    [CrossRef] [PubMed]
  4. M. A. Choma, M. V. Sarunic, C. H. Yang, and J. A. Izatt, "Sensitivity advantage of swept source and Fourier domain optical coherence tomography," Opt. Express 11, 2183-2189 (2003),
    [CrossRef] [PubMed]
  5. H. Barfuss, and E. Brinkmeyer, "Modified optical frequency-domain reflectometry with high spatial-resolution for components of integrated optic systems," J. Lightwave Technol. 7, 3-10 (1989).
    [CrossRef]
  6. S. H. Yun, G. J. Tearney, J. F. de Boer, M. Shishkov, W. Y. Oh, and B. E. Bouma, "Catheter-based optical frequency domain imaging at 36 frames per second," in Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine IX, 5690-16(San Jose, CA, 2005).
  7. B. J. Vakoc, S. H. Yun, M. S. Shishkov, W. Oh, J. A. Evans, N. S. Nishioka, B. E. Bouma, and G. J. Tearney, "Comprehensive microscopy of the esophagus using optical frequency domain imaging," in Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine X, 6082-13(San Jose, CA, 2006).
  8. R. Huber, M. Wojtkowski, J. G. Fujimoto, J. Y. Jiang, and A. E. Cable, "Three-dimensional and C-mode OCT imaging with a compact, frequency swept laser source at 1300 nm," Opt. Express 13, 10523-10538 (2005).
    [CrossRef] [PubMed]
  9. Y. Yasuno, V. D. Madjarova, S. Makita, M. Akiba, A. Morosawa, C. Chong, T. Sakai, K. P. Chan, M. Itoh, and T. Yatagai, "Three-dimensional and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments," Opt. Express 13, 10652-10664 (2005).
    [CrossRef] [PubMed]
  10. J. Zhang, and Z. P. Chen, "In vivo blood flow imaging by a swept laser source based Fourier domain optical Doppler tomography," Opt. Express 13, 7449-7457 (2005).
    [CrossRef] [PubMed]
  11. M. A. Choma, K. Hsu, and J. A. Izatt, "Swept source optical coherence tomography using an all-fiber 1300-nm ring laser source," J Biomed Opt 10, 44009 (2005).
    [CrossRef] [PubMed]
  12. R. Huber, M. Wojtkowski, K. Taira, J. G. Fujimoto, and K. Hsu, "Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles," Opt. Express 13, 3513-3528 (2005).
    [CrossRef] [PubMed]
  13. M. R. Hee, J. A. Izatt, E. A. Swanson, D. Huang, J. S. Schuman, C. P. Lin, C. A. Puliafito, and J. G. Fujimoto, "Optical Coherence Tomography of the Human Retina," Arch. Opthalmol. 113, 325-332 (1995).
    [CrossRef]
  14. C. A. Puliafito, M. R. Hee, C. P. Lin, E. Reichel, J. S. Schuman, J. S. Duker, J. A. Izatt, E. A. Swanson, and J. G. Fujimoto, "Imaging of Macular Diseases with Optical Coherence Tomography," Ophthalmology 102, 217-229 (1995).
    [PubMed]
  15. A. Unterhuber, B. Povazay, B. Hermann, H. Sattmann, A. Chavez-Pirson, and W. Drexler, "In vivo retinal optical coherence tomography at 1040 nm-enhanced penetration into the choroid," Opt. Express 13, 3252-3258 (2005).
    [CrossRef] [PubMed]
  16. S. Bourquin, A. D. Aguirre, I. Hartl, P. Hsiung, T. H. Ko, J. G. Fujimoto, T. A. Birks, W. J. Wadsworth, U. Bunting, and D. Kopf, "Ultrahigh resolution real time OCT imaging using a compact femtosecond Nd : Glass laser and nonlinear fiber," Opt. Express 11, 3290-3297 (2003).
    [CrossRef] [PubMed]
  17. H. Lim, Y. Jiang, Y. M. Wang, Y. C. Huang, Z. P. Chen, and F. W. Wise, "Ultrahigh-resolution optical coherence tomography with a fiber laser source at 1 μm," Opt. Lett. 30, 1171-1173 (2005).
    [CrossRef] [PubMed]
  18. M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, "In vivo human retinal imaging by Fourier domain optical coherence tomography," J. Biomed. Opt. 7, 457-463 (2002).
    [CrossRef] [PubMed]
  19. N. A. Nassif, B. Cense, B. H. Park, M. C. Pierce, S. H. Yun, B. E. Bouma, G. J. Tearney, T. C. Chen, and J. F. de Boer, "In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve," Opt. Express 12, 367-376 (2004).
    [CrossRef] [PubMed]
  20. S. H. Yun, G. J. Tearney, J. F. de Boer, and B. E. Bouma, "Motion artifacts in optical coherence tomography with frequency-domain ranging," Opt. Express 12, 2977-2998 (2004).
    [CrossRef] [PubMed]
  21. M. V. Shramenko, E. V. Andreeva, D. S. Mamedov, V. R. Shidlovski, and S. D. Yakubovich, "NIR semiconductor laser with fast broadband tuning," in Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine X, 6079-42(2006).
  22. F. D. Nielsen, L. Thrane, J. Black, K. Hsu, A. Bjarklev, and P. E. Andersen, "Swept-Wavelength Source for Optical Coherence Tomography in the 1 µm Range," in European Congress on Biomedical Optics (ECBO)(Munich, Germany, 12-16 June 2005).
  23. S. H. Yun, C. Boudoux, G. J. Tearney, and B. E. Bouma, "High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter," Opt. Lett. 28, 1981-1983 (2003).
    [CrossRef] [PubMed]
  24. B. Cense, H. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer, "In vivo birefringence and thickness measurements of the human retinal nerve fiber layer using polarization-sensitive optical coherence tomography," J. Biomed. Opt. 9, 121-125 (2004).
    [CrossRef] [PubMed]
  25. American National Standards Institute, American national standard for safe use of lasers z136.1 (American National Standards Institute, Orlando, FL, 2000).
  26. D. J. Segelstein, The complex refractive index of water (University of Missouri-Kansas City, 1981).
  27. B. Cense, N. A. Nassif, T. C. Chen, M. C. Pierce, S. H. Yun, B. H. Park, B. E. Bouma, G. J. Tearney, and J. F. de Boer, "Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography," Opt. Express 12, 2435-2447 (2004).
    [CrossRef] [PubMed]
  28. S. L. Jiao, R. Knighton, X. R. Huang, G. Gregori, and C. A. Puliafito, "Simultaneous acquisition of sectional and fundus ophthalmic images with spectral-domain optical coherence tomography," Opt. Express 13, 444-452 (2005).
    [CrossRef] [PubMed]
  29. M. Mujat, R. C. Chan, B. Cense, B. H. Park, C. Joo, T. Akkin, T. C. Chen, and J. F. de Boer, "Retinal nerve fiber layer thickness map determined from optical coherence tomography images," Opt. Express 13, 9480-9491 (2005).
    [CrossRef] [PubMed]
  30. V. Poukens, B. J. Glasgow, and J. L. Demer, "Nonvascular contractile cells in sclera and choroid of humans and monkeys," Invest. Ophthalmol. Visual Sci. 39, 1765-1774 (1998).
  31. D. V. Alfaro, P. E. Liggett, W. F. Mieler, H. Quiroz-Mercado, R. D. Jager, and Y. Tano, Age-related macular degneration: a comprehensive textbook (Lippincott Williams & Wilkins, Philadelphia, PA, 2006).
  32. F. C. Delori, E. S. Gragoudas, R. Francisco, and R. C. Pruett, "Monochromatic Ophthalmoscopy and Fundus Photography - Normal Fundus," Arch. Opthalmol. 95, 861-868 (1977).
    [CrossRef]
  33. R. H. Webb, G. W. Hughes, and F. C. Delori, "Confocal Scanning Laser Ophthalmoscope," Appl. Opt. 26, 1492-1499 (1987).
    [CrossRef] [PubMed]
  34. F. G. Holz, C. Bellmann, K. Rohrschneider, R. O. W. Burk, and H. E. Volcker, "Simultaneous confocal scanning laser fluorescein and indocyanine green angiography," Am. J. Opthalmol. 125, 227-236 (1998).
    [CrossRef]

2005 (9)

M. A. Choma, K. Hsu, and J. A. Izatt, "Swept source optical coherence tomography using an all-fiber 1300-nm ring laser source," J Biomed Opt 10, 44009 (2005).
[CrossRef] [PubMed]

S. L. Jiao, R. Knighton, X. R. Huang, G. Gregori, and C. A. Puliafito, "Simultaneous acquisition of sectional and fundus ophthalmic images with spectral-domain optical coherence tomography," Opt. Express 13, 444-452 (2005).
[CrossRef] [PubMed]

A. Unterhuber, B. Povazay, B. Hermann, H. Sattmann, A. Chavez-Pirson, and W. Drexler, "In vivo retinal optical coherence tomography at 1040 nm-enhanced penetration into the choroid," Opt. Express 13, 3252-3258 (2005).
[CrossRef] [PubMed]

R. Huber, M. Wojtkowski, K. Taira, J. G. Fujimoto, and K. Hsu, "Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles," Opt. Express 13, 3513-3528 (2005).
[CrossRef] [PubMed]

H. Lim, Y. Jiang, Y. M. Wang, Y. C. Huang, Z. P. Chen, and F. W. Wise, "Ultrahigh-resolution optical coherence tomography with a fiber laser source at 1 μm," Opt. Lett. 30, 1171-1173 (2005).
[CrossRef] [PubMed]

J. Zhang, and Z. P. Chen, "In vivo blood flow imaging by a swept laser source based Fourier domain optical Doppler tomography," Opt. Express 13, 7449-7457 (2005).
[CrossRef] [PubMed]

M. Mujat, R. C. Chan, B. Cense, B. H. Park, C. Joo, T. Akkin, T. C. Chen, and J. F. de Boer, "Retinal nerve fiber layer thickness map determined from optical coherence tomography images," Opt. Express 13, 9480-9491 (2005).
[CrossRef] [PubMed]

R. Huber, M. Wojtkowski, J. G. Fujimoto, J. Y. Jiang, and A. E. Cable, "Three-dimensional and C-mode OCT imaging with a compact, frequency swept laser source at 1300 nm," Opt. Express 13, 10523-10538 (2005).
[CrossRef] [PubMed]

Y. Yasuno, V. D. Madjarova, S. Makita, M. Akiba, A. Morosawa, C. Chong, T. Sakai, K. P. Chan, M. Itoh, and T. Yatagai, "Three-dimensional and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments," Opt. Express 13, 10652-10664 (2005).
[CrossRef] [PubMed]

2004 (4)

2003 (5)

2002 (1)

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, "In vivo human retinal imaging by Fourier domain optical coherence tomography," J. Biomed. Opt. 7, 457-463 (2002).
[CrossRef] [PubMed]

1998 (2)

V. Poukens, B. J. Glasgow, and J. L. Demer, "Nonvascular contractile cells in sclera and choroid of humans and monkeys," Invest. Ophthalmol. Visual Sci. 39, 1765-1774 (1998).

F. G. Holz, C. Bellmann, K. Rohrschneider, R. O. W. Burk, and H. E. Volcker, "Simultaneous confocal scanning laser fluorescein and indocyanine green angiography," Am. J. Opthalmol. 125, 227-236 (1998).
[CrossRef]

1997 (1)

1995 (2)

M. R. Hee, J. A. Izatt, E. A. Swanson, D. Huang, J. S. Schuman, C. P. Lin, C. A. Puliafito, and J. G. Fujimoto, "Optical Coherence Tomography of the Human Retina," Arch. Opthalmol. 113, 325-332 (1995).
[CrossRef]

C. A. Puliafito, M. R. Hee, C. P. Lin, E. Reichel, J. S. Schuman, J. S. Duker, J. A. Izatt, E. A. Swanson, and J. G. Fujimoto, "Imaging of Macular Diseases with Optical Coherence Tomography," Ophthalmology 102, 217-229 (1995).
[PubMed]

1989 (1)

H. Barfuss, and E. Brinkmeyer, "Modified optical frequency-domain reflectometry with high spatial-resolution for components of integrated optic systems," J. Lightwave Technol. 7, 3-10 (1989).
[CrossRef]

1987 (1)

1977 (1)

F. C. Delori, E. S. Gragoudas, R. Francisco, and R. C. Pruett, "Monochromatic Ophthalmoscopy and Fundus Photography - Normal Fundus," Arch. Opthalmol. 95, 861-868 (1977).
[CrossRef]

Aguirre, A. D.

Akiba, M.

Akkin, T.

Bajraszewski, T.

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, "In vivo human retinal imaging by Fourier domain optical coherence tomography," J. Biomed. Opt. 7, 457-463 (2002).
[CrossRef] [PubMed]

Barfuss, H.

H. Barfuss, and E. Brinkmeyer, "Modified optical frequency-domain reflectometry with high spatial-resolution for components of integrated optic systems," J. Lightwave Technol. 7, 3-10 (1989).
[CrossRef]

Bellmann, C.

F. G. Holz, C. Bellmann, K. Rohrschneider, R. O. W. Burk, and H. E. Volcker, "Simultaneous confocal scanning laser fluorescein and indocyanine green angiography," Am. J. Opthalmol. 125, 227-236 (1998).
[CrossRef]

Birks, T. A.

Boudoux, C.

Bouma, B. E.

Bourquin, S.

Brinkmeyer, E.

H. Barfuss, and E. Brinkmeyer, "Modified optical frequency-domain reflectometry with high spatial-resolution for components of integrated optic systems," J. Lightwave Technol. 7, 3-10 (1989).
[CrossRef]

Bunting, U.

Burk, R. O. W.

F. G. Holz, C. Bellmann, K. Rohrschneider, R. O. W. Burk, and H. E. Volcker, "Simultaneous confocal scanning laser fluorescein and indocyanine green angiography," Am. J. Opthalmol. 125, 227-236 (1998).
[CrossRef]

Cable, A. E.

Cense, B.

Chan, K. P.

Chan, R. C.

Chavez-Pirson, A.

Chen, H. C.

B. Cense, H. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer, "In vivo birefringence and thickness measurements of the human retinal nerve fiber layer using polarization-sensitive optical coherence tomography," J. Biomed. Opt. 9, 121-125 (2004).
[CrossRef] [PubMed]

Chen, T. C.

Chen, Z. P.

Chinn, S. R.

Choma, M. A.

M. A. Choma, K. Hsu, and J. A. Izatt, "Swept source optical coherence tomography using an all-fiber 1300-nm ring laser source," J Biomed Opt 10, 44009 (2005).
[CrossRef] [PubMed]

M. A. Choma, M. V. Sarunic, C. H. Yang, and J. A. Izatt, "Sensitivity advantage of swept source and Fourier domain optical coherence tomography," Opt. Express 11, 2183-2189 (2003),
[CrossRef] [PubMed]

Chong, C.

de Boer, J. F.

Delori, F. C.

R. H. Webb, G. W. Hughes, and F. C. Delori, "Confocal Scanning Laser Ophthalmoscope," Appl. Opt. 26, 1492-1499 (1987).
[CrossRef] [PubMed]

F. C. Delori, E. S. Gragoudas, R. Francisco, and R. C. Pruett, "Monochromatic Ophthalmoscopy and Fundus Photography - Normal Fundus," Arch. Opthalmol. 95, 861-868 (1977).
[CrossRef]

Demer, J. L.

V. Poukens, B. J. Glasgow, and J. L. Demer, "Nonvascular contractile cells in sclera and choroid of humans and monkeys," Invest. Ophthalmol. Visual Sci. 39, 1765-1774 (1998).

Drexler, W.

Duker, J. S.

C. A. Puliafito, M. R. Hee, C. P. Lin, E. Reichel, J. S. Schuman, J. S. Duker, J. A. Izatt, E. A. Swanson, and J. G. Fujimoto, "Imaging of Macular Diseases with Optical Coherence Tomography," Ophthalmology 102, 217-229 (1995).
[PubMed]

Fercher, A. F.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, "Optical coherence tomography - principles and applications," Rep. Prog. Phys. 66, 239-303 (2003).
[CrossRef]

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, "In vivo human retinal imaging by Fourier domain optical coherence tomography," J. Biomed. Opt. 7, 457-463 (2002).
[CrossRef] [PubMed]

Francisco, R.

F. C. Delori, E. S. Gragoudas, R. Francisco, and R. C. Pruett, "Monochromatic Ophthalmoscopy and Fundus Photography - Normal Fundus," Arch. Opthalmol. 95, 861-868 (1977).
[CrossRef]

Fujimoto, J. G.

Glasgow, B. J.

V. Poukens, B. J. Glasgow, and J. L. Demer, "Nonvascular contractile cells in sclera and choroid of humans and monkeys," Invest. Ophthalmol. Visual Sci. 39, 1765-1774 (1998).

Gragoudas, E. S.

F. C. Delori, E. S. Gragoudas, R. Francisco, and R. C. Pruett, "Monochromatic Ophthalmoscopy and Fundus Photography - Normal Fundus," Arch. Opthalmol. 95, 861-868 (1977).
[CrossRef]

Gregori, G.

Hartl, I.

Hee, M. R.

C. A. Puliafito, M. R. Hee, C. P. Lin, E. Reichel, J. S. Schuman, J. S. Duker, J. A. Izatt, E. A. Swanson, and J. G. Fujimoto, "Imaging of Macular Diseases with Optical Coherence Tomography," Ophthalmology 102, 217-229 (1995).
[PubMed]

M. R. Hee, J. A. Izatt, E. A. Swanson, D. Huang, J. S. Schuman, C. P. Lin, C. A. Puliafito, and J. G. Fujimoto, "Optical Coherence Tomography of the Human Retina," Arch. Opthalmol. 113, 325-332 (1995).
[CrossRef]

Hermann, B.

Hitzenberger, C. K.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, "Optical coherence tomography - principles and applications," Rep. Prog. Phys. 66, 239-303 (2003).
[CrossRef]

Holz, F. G.

F. G. Holz, C. Bellmann, K. Rohrschneider, R. O. W. Burk, and H. E. Volcker, "Simultaneous confocal scanning laser fluorescein and indocyanine green angiography," Am. J. Opthalmol. 125, 227-236 (1998).
[CrossRef]

Hsiung, P.

Hsu, K.

Huang, D.

M. R. Hee, J. A. Izatt, E. A. Swanson, D. Huang, J. S. Schuman, C. P. Lin, C. A. Puliafito, and J. G. Fujimoto, "Optical Coherence Tomography of the Human Retina," Arch. Opthalmol. 113, 325-332 (1995).
[CrossRef]

Huang, X. R.

Huang, Y. C.

Huber, R.

Hughes, G. W.

Iftimia, N.

Itoh, M.

Izatt, J. A.

M. A. Choma, K. Hsu, and J. A. Izatt, "Swept source optical coherence tomography using an all-fiber 1300-nm ring laser source," J Biomed Opt 10, 44009 (2005).
[CrossRef] [PubMed]

M. A. Choma, M. V. Sarunic, C. H. Yang, and J. A. Izatt, "Sensitivity advantage of swept source and Fourier domain optical coherence tomography," Opt. Express 11, 2183-2189 (2003),
[CrossRef] [PubMed]

C. A. Puliafito, M. R. Hee, C. P. Lin, E. Reichel, J. S. Schuman, J. S. Duker, J. A. Izatt, E. A. Swanson, and J. G. Fujimoto, "Imaging of Macular Diseases with Optical Coherence Tomography," Ophthalmology 102, 217-229 (1995).
[PubMed]

M. R. Hee, J. A. Izatt, E. A. Swanson, D. Huang, J. S. Schuman, C. P. Lin, C. A. Puliafito, and J. G. Fujimoto, "Optical Coherence Tomography of the Human Retina," Arch. Opthalmol. 113, 325-332 (1995).
[CrossRef]

Jiang, J. Y.

Jiang, Y.

Jiao, S. L.

Joo, C.

Knighton, R.

Ko, T. H.

Kopf, D.

Kowalczyk, A.

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, "In vivo human retinal imaging by Fourier domain optical coherence tomography," J. Biomed. Opt. 7, 457-463 (2002).
[CrossRef] [PubMed]

Lasser, T.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, "Optical coherence tomography - principles and applications," Rep. Prog. Phys. 66, 239-303 (2003).
[CrossRef]

Leitgeb, R.

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, "In vivo human retinal imaging by Fourier domain optical coherence tomography," J. Biomed. Opt. 7, 457-463 (2002).
[CrossRef] [PubMed]

Lim, H.

Lin, C. P.

C. A. Puliafito, M. R. Hee, C. P. Lin, E. Reichel, J. S. Schuman, J. S. Duker, J. A. Izatt, E. A. Swanson, and J. G. Fujimoto, "Imaging of Macular Diseases with Optical Coherence Tomography," Ophthalmology 102, 217-229 (1995).
[PubMed]

M. R. Hee, J. A. Izatt, E. A. Swanson, D. Huang, J. S. Schuman, C. P. Lin, C. A. Puliafito, and J. G. Fujimoto, "Optical Coherence Tomography of the Human Retina," Arch. Opthalmol. 113, 325-332 (1995).
[CrossRef]

Madjarova, V. D.

Makita, S.

Morosawa, A.

Mujat, M.

Nassif, N. A.

Park, B. H.

Pierce, M. C.

Poukens, V.

V. Poukens, B. J. Glasgow, and J. L. Demer, "Nonvascular contractile cells in sclera and choroid of humans and monkeys," Invest. Ophthalmol. Visual Sci. 39, 1765-1774 (1998).

Povazay, B.

Pruett, R. C.

F. C. Delori, E. S. Gragoudas, R. Francisco, and R. C. Pruett, "Monochromatic Ophthalmoscopy and Fundus Photography - Normal Fundus," Arch. Opthalmol. 95, 861-868 (1977).
[CrossRef]

Puliafito, C. A.

S. L. Jiao, R. Knighton, X. R. Huang, G. Gregori, and C. A. Puliafito, "Simultaneous acquisition of sectional and fundus ophthalmic images with spectral-domain optical coherence tomography," Opt. Express 13, 444-452 (2005).
[CrossRef] [PubMed]

M. R. Hee, J. A. Izatt, E. A. Swanson, D. Huang, J. S. Schuman, C. P. Lin, C. A. Puliafito, and J. G. Fujimoto, "Optical Coherence Tomography of the Human Retina," Arch. Opthalmol. 113, 325-332 (1995).
[CrossRef]

C. A. Puliafito, M. R. Hee, C. P. Lin, E. Reichel, J. S. Schuman, J. S. Duker, J. A. Izatt, E. A. Swanson, and J. G. Fujimoto, "Imaging of Macular Diseases with Optical Coherence Tomography," Ophthalmology 102, 217-229 (1995).
[PubMed]

Reichel, E.

C. A. Puliafito, M. R. Hee, C. P. Lin, E. Reichel, J. S. Schuman, J. S. Duker, J. A. Izatt, E. A. Swanson, and J. G. Fujimoto, "Imaging of Macular Diseases with Optical Coherence Tomography," Ophthalmology 102, 217-229 (1995).
[PubMed]

Rohrschneider, K.

F. G. Holz, C. Bellmann, K. Rohrschneider, R. O. W. Burk, and H. E. Volcker, "Simultaneous confocal scanning laser fluorescein and indocyanine green angiography," Am. J. Opthalmol. 125, 227-236 (1998).
[CrossRef]

Sakai, T.

Sarunic, M. V.

Sattmann, H.

Schuman, J. S.

C. A. Puliafito, M. R. Hee, C. P. Lin, E. Reichel, J. S. Schuman, J. S. Duker, J. A. Izatt, E. A. Swanson, and J. G. Fujimoto, "Imaging of Macular Diseases with Optical Coherence Tomography," Ophthalmology 102, 217-229 (1995).
[PubMed]

M. R. Hee, J. A. Izatt, E. A. Swanson, D. Huang, J. S. Schuman, C. P. Lin, C. A. Puliafito, and J. G. Fujimoto, "Optical Coherence Tomography of the Human Retina," Arch. Opthalmol. 113, 325-332 (1995).
[CrossRef]

Swanson, E. A.

S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, "Optical coherence tomography using a frequency-tunable optical source," Opt. Lett. 22, 340-342 (1997).
[CrossRef] [PubMed]

M. R. Hee, J. A. Izatt, E. A. Swanson, D. Huang, J. S. Schuman, C. P. Lin, C. A. Puliafito, and J. G. Fujimoto, "Optical Coherence Tomography of the Human Retina," Arch. Opthalmol. 113, 325-332 (1995).
[CrossRef]

C. A. Puliafito, M. R. Hee, C. P. Lin, E. Reichel, J. S. Schuman, J. S. Duker, J. A. Izatt, E. A. Swanson, and J. G. Fujimoto, "Imaging of Macular Diseases with Optical Coherence Tomography," Ophthalmology 102, 217-229 (1995).
[PubMed]

Taira, K.

Tearney, G. J.

Unterhuber, A.

Volcker, H. E.

F. G. Holz, C. Bellmann, K. Rohrschneider, R. O. W. Burk, and H. E. Volcker, "Simultaneous confocal scanning laser fluorescein and indocyanine green angiography," Am. J. Opthalmol. 125, 227-236 (1998).
[CrossRef]

Wadsworth, W. J.

Wang, Y. M.

Webb, R. H.

Wise, F. W.

Wojtkowski, M.

Yang, C. H.

Yasuno, Y.

Yatagai, T.

Yun, S. H.

Zhang, J.

Am. J. Opthalmol. (1)

F. G. Holz, C. Bellmann, K. Rohrschneider, R. O. W. Burk, and H. E. Volcker, "Simultaneous confocal scanning laser fluorescein and indocyanine green angiography," Am. J. Opthalmol. 125, 227-236 (1998).
[CrossRef]

Appl. Opt. (1)

Arch. Opthalmol. (2)

F. C. Delori, E. S. Gragoudas, R. Francisco, and R. C. Pruett, "Monochromatic Ophthalmoscopy and Fundus Photography - Normal Fundus," Arch. Opthalmol. 95, 861-868 (1977).
[CrossRef]

M. R. Hee, J. A. Izatt, E. A. Swanson, D. Huang, J. S. Schuman, C. P. Lin, C. A. Puliafito, and J. G. Fujimoto, "Optical Coherence Tomography of the Human Retina," Arch. Opthalmol. 113, 325-332 (1995).
[CrossRef]

Invest. Ophthalmol. Visual Sci. (1)

V. Poukens, B. J. Glasgow, and J. L. Demer, "Nonvascular contractile cells in sclera and choroid of humans and monkeys," Invest. Ophthalmol. Visual Sci. 39, 1765-1774 (1998).

J Biomed Opt (1)

M. A. Choma, K. Hsu, and J. A. Izatt, "Swept source optical coherence tomography using an all-fiber 1300-nm ring laser source," J Biomed Opt 10, 44009 (2005).
[CrossRef] [PubMed]

J. Biomed. Opt. (2)

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, "In vivo human retinal imaging by Fourier domain optical coherence tomography," J. Biomed. Opt. 7, 457-463 (2002).
[CrossRef] [PubMed]

B. Cense, H. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer, "In vivo birefringence and thickness measurements of the human retinal nerve fiber layer using polarization-sensitive optical coherence tomography," J. Biomed. Opt. 9, 121-125 (2004).
[CrossRef] [PubMed]

J. Lightwave Technol. (1)

H. Barfuss, and E. Brinkmeyer, "Modified optical frequency-domain reflectometry with high spatial-resolution for components of integrated optic systems," J. Lightwave Technol. 7, 3-10 (1989).
[CrossRef]

Ophthalmology (1)

C. A. Puliafito, M. R. Hee, C. P. Lin, E. Reichel, J. S. Schuman, J. S. Duker, J. A. Izatt, E. A. Swanson, and J. G. Fujimoto, "Imaging of Macular Diseases with Optical Coherence Tomography," Ophthalmology 102, 217-229 (1995).
[PubMed]

Opt. Express (13)

J. Zhang, and Z. P. Chen, "In vivo blood flow imaging by a swept laser source based Fourier domain optical Doppler tomography," Opt. Express 13, 7449-7457 (2005).
[CrossRef] [PubMed]

M. Mujat, R. C. Chan, B. Cense, B. H. Park, C. Joo, T. Akkin, T. C. Chen, and J. F. de Boer, "Retinal nerve fiber layer thickness map determined from optical coherence tomography images," Opt. Express 13, 9480-9491 (2005).
[CrossRef] [PubMed]

R. Huber, M. Wojtkowski, J. G. Fujimoto, J. Y. Jiang, and A. E. Cable, "Three-dimensional and C-mode OCT imaging with a compact, frequency swept laser source at 1300 nm," Opt. Express 13, 10523-10538 (2005).
[CrossRef] [PubMed]

Y. Yasuno, V. D. Madjarova, S. Makita, M. Akiba, A. Morosawa, C. Chong, T. Sakai, K. P. Chan, M. Itoh, and T. Yatagai, "Three-dimensional and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments," Opt. Express 13, 10652-10664 (2005).
[CrossRef] [PubMed]

S. H. Yun, G. J. Tearney, J. F. de Boer, N. Iftimia, and B. E. Bouma, "High-speed optical frequency-domain imaging," Opt. Express 11, 2953-2963 (2003),
[CrossRef] [PubMed]

S. Bourquin, A. D. Aguirre, I. Hartl, P. Hsiung, T. H. Ko, J. G. Fujimoto, T. A. Birks, W. J. Wadsworth, U. Bunting, and D. Kopf, "Ultrahigh resolution real time OCT imaging using a compact femtosecond Nd : Glass laser and nonlinear fiber," Opt. Express 11, 3290-3297 (2003).
[CrossRef] [PubMed]

N. A. Nassif, B. Cense, B. H. Park, M. C. Pierce, S. H. Yun, B. E. Bouma, G. J. Tearney, T. C. Chen, and J. F. de Boer, "In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve," Opt. Express 12, 367-376 (2004).
[CrossRef] [PubMed]

M. A. Choma, M. V. Sarunic, C. H. Yang, and J. A. Izatt, "Sensitivity advantage of swept source and Fourier domain optical coherence tomography," Opt. Express 11, 2183-2189 (2003),
[CrossRef] [PubMed]

B. Cense, N. A. Nassif, T. C. Chen, M. C. Pierce, S. H. Yun, B. H. Park, B. E. Bouma, G. J. Tearney, and J. F. de Boer, "Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography," Opt. Express 12, 2435-2447 (2004).
[CrossRef] [PubMed]

S. H. Yun, G. J. Tearney, J. F. de Boer, and B. E. Bouma, "Motion artifacts in optical coherence tomography with frequency-domain ranging," Opt. Express 12, 2977-2998 (2004).
[CrossRef] [PubMed]

S. L. Jiao, R. Knighton, X. R. Huang, G. Gregori, and C. A. Puliafito, "Simultaneous acquisition of sectional and fundus ophthalmic images with spectral-domain optical coherence tomography," Opt. Express 13, 444-452 (2005).
[CrossRef] [PubMed]

A. Unterhuber, B. Povazay, B. Hermann, H. Sattmann, A. Chavez-Pirson, and W. Drexler, "In vivo retinal optical coherence tomography at 1040 nm-enhanced penetration into the choroid," Opt. Express 13, 3252-3258 (2005).
[CrossRef] [PubMed]

R. Huber, M. Wojtkowski, K. Taira, J. G. Fujimoto, and K. Hsu, "Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles," Opt. Express 13, 3513-3528 (2005).
[CrossRef] [PubMed]

Opt. Lett. (3)

Rep. Prog. Phys. (1)

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, "Optical coherence tomography - principles and applications," Rep. Prog. Phys. 66, 239-303 (2003).
[CrossRef]

Other (7)

S. H. Yun, G. J. Tearney, J. F. de Boer, M. Shishkov, W. Y. Oh, and B. E. Bouma, "Catheter-based optical frequency domain imaging at 36 frames per second," in Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine IX, 5690-16(San Jose, CA, 2005).

B. J. Vakoc, S. H. Yun, M. S. Shishkov, W. Oh, J. A. Evans, N. S. Nishioka, B. E. Bouma, and G. J. Tearney, "Comprehensive microscopy of the esophagus using optical frequency domain imaging," in Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine X, 6082-13(San Jose, CA, 2006).

American National Standards Institute, American national standard for safe use of lasers z136.1 (American National Standards Institute, Orlando, FL, 2000).

D. J. Segelstein, The complex refractive index of water (University of Missouri-Kansas City, 1981).

M. V. Shramenko, E. V. Andreeva, D. S. Mamedov, V. R. Shidlovski, and S. D. Yakubovich, "NIR semiconductor laser with fast broadband tuning," in Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine X, 6079-42(2006).

F. D. Nielsen, L. Thrane, J. Black, K. Hsu, A. Bjarklev, and P. E. Andersen, "Swept-Wavelength Source for Optical Coherence Tomography in the 1 µm Range," in European Congress on Biomedical Optics (ECBO)(Munich, Germany, 12-16 June 2005).

D. V. Alfaro, P. E. Liggett, W. F. Mieler, H. Quiroz-Mercado, R. D. Jager, and Y. Tano, Age-related macular degneration: a comprehensive textbook (Lippincott Williams & Wilkins, Philadelphia, PA, 2006).

Supplementary Material (2)

» Media 1: MOV (11345 KB)     
» Media 2: MOV (2417 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Experimental setup: (a) wavelength-swept laser and (b) OFDI system.

Fig. 2.
Fig. 2.

Measured laser output characteristics. (a) Peak-hold output spectrum (blue curve) and optical absorption in water (red curve) for 42-mm propagation distance corresponding to a roundtrip in typical human vitreous. (b) Time-domain output trace.

Fig. 3.
Fig. 3.

Point spread functions measured at various path length differences for a sample reflectivity of-73 dB. To facilitate SNR analysis, each curve plotted was obtained by averaging over 500 consecutive scans at constant depth, and a simple numerical subtraction was performed to make the noise floor flat.

Fig. 4.
Fig. 4.

(2.4 MB) A sequence of OFDI retina and choroid images obtained from a healthy volunteer. Each image frame consists of 1000 axial lines and spans over 6.0 mm (horizontal) and 1.8 mm (depth) in tissue. A total of 200 frames were acquired over 10.6 seconds to screen a tissue area with a vertical span of 5.2 mm. Only 120 frames are shown in the movie. The image above shows the fovea and optic disc. (11 MB version)

Fig. 5.
Fig. 5.

Comparison of two imaging systems (OFDI at 1050 nm and SD-OCT at 840 nm). A1 and A2: OFDI images at fovea and optic nerve head, respectively, from volunteer A, 36-year-old Asian male. A3 and A4: SD-OCT images from the same volunteer at similar tissue locations. B1 and B2: OFDI and SDOCT images, respectively, obtained from volunteer B, 41-year-old Caucasian male. OFDI images exhibit considerably deeper penetration in tissue than SD-OCT images in all the data sets. The OFDI image (A1) shows the anatomical layered structure: RNFL; retinal nerve fiber layer, IPL; inner plexiform layer, INL; inner nuclear layer, OPL; outer plexiform layer, ONL; outer nuclear layer, IPRL; interface between the inner and outer segments of the photoreceptor layer, RPE; retinal pigmented epithelium, and C; choriocapillaris and choroid.

Fig. 6.
Fig. 6.

The retinal and choroidal vasculature extracted from the three-dimensional OFDI data set (Fig. 4). (A) Two-dimensional reflectivity image (5.3 × 5.2 mm2) obtained with the conventional full-range integration method. Higher (lower) reflectivity is represented by white (black) in the grayscale. (B) Illustration of the depthsectioning integration method, with the different integration regions labeled C,D,E corresponding to the following fundus-type reflectivity images, respectively: (C) retinal reflectivity image showing the shadow of retinal vasculature (3.8 × 5.2 mm2), (D) reflectivity image obtained from the upper part of the choroid, and (E) reflectivity image from the center of the choroid revealing the choroidal vasculature. Shadows of retinal vasculature are also visible in D and E. Scale bars: 0.5 mm.

Metrics