Abstract

We demonstrate an optical frequency comb with fractional frequency instability of ≳2×10-14 at measurement times near 1 s, when the 10th harmonic of the comb spacing is controlled by a liquid helium cooled microwave sapphire oscillator. The frequency instability of the comb is estimated by comparing it to a cavity-stabilized optical oscillator. The less conventional approach of synthesizing low-noise optical signals from a microwave source is relevant when a laboratory has microwave sources with frequency stability superior to their optical counterparts. We describe the influence of high frequency environmental noise and how it impacts the phase-stabilized frequency comb performance at integration times less than 1 s.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Th. Udem, J. Reichert, R. Holzwarth, and T.W. Hänsch, “Absolute optical frequency measurement of the Cesium D1 line with a mode-locked laser,” Phys. Rev. Lett. 82, 3568–71 (1999)
    [Crossref]
  2. S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzworth, Th. Udem, and T.W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102 (2000)
    [Crossref] [PubMed]
  3. R. Holzwarth, Th. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. St J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85, 2264 (2000)
    [Crossref] [PubMed]
  4. L. Hollberg, C.W. Oates, E. A. Curtis, E. N. Ivanov, S. A. Diddams, Th. Udem, H. G. Robinson, J. C. Bergquist, R. J. Rafac, W. M. Itano, R. E. Drullinger, and D. J. Wineland, “Optical frequency standards and measurements,” IEEE J. Quantum Electron. 37, 1502–1513 (2001)
    [Crossref]
  5. Th. Udem, S. A. Diddams, K. R. Vogel, C.W. Oates, E. A. Curtis, W. D. Lee, W. M. Itano, R. E. Drullinger, J. C. Berquist, and L. Hollberg, “Absolute frequency measurements of the Hg+ and Ca optical clock transitions with a femtosecond laser,” Phys. Rev. Lett. 86, 4996–9 (2001).
    [Crossref] [PubMed]
  6. V. Gerginov, K Calkins, C. E. Tanner, S. Diddams, A. Bartels, and L. Hollberg, “Optical frequency measurements of 6s 2S1/2 -6p 2P3/2 transition in a 133Cs atomic beam using a femtosecond laser frequency comb,” Phys. Rev. A 70, 042505 (2004).
    [Crossref]
  7. C.W. Hoyt, Z.W. Barber, C.W. Oates, T.M. Fortier, S.A. Diddams, and L. Hollberg, “Observation and absolute frequency measurements of the 1S0 -3 P0 optical clock transition in neutral ytterbium,” Phys. Rev. Lett. 95, 083003 (2005).
    [Crossref] [PubMed]
  8. H. Schnatz, B. Lipphardt, C. Degenhardt, E Peik, T. Schneider, U. Sterr, and C. Tamm, “Optical frequency measurements using fs-comb generators,” IEEE Trans. Instrum. Meas. 54, 750–753 (2005).
    [Crossref]
  9. V. Gerginov, K. Calkins, C.E. Tanner, J.J. McFerran, S. Diddams, A. Bartels, and L. Hollberg, “Optical frequency measurements of 6s 2S1/2 -6p 2P1/2 (D1) transitions in 133Cs and their impact on the fine-structure constant,” Phys. Rev. A 73, 035601 (2006).
    [Crossref]
  10. A. Marian, M. C. Stowe, J.R. Lawall, D. Felinto, and J. Ye, “United time-frequency spectroscopy for dynamics and global structure,” Science 306, 2063 (2004).
    [Crossref] [PubMed]
  11. V. Gerginov, C. E. Tanner, S. A. Diddams, A. Bartels, and L. Hollberg, “High-resolution spectroscopy with a femtosecond laser frequency comb,” Opt. Lett. 30, 1734–1736 (2005).
    [Crossref] [PubMed]
  12. A. Marian, M. C. Stowe, D. Felinto, and J. Ye, “Direct frequency comb measurements of absolute optical frequencies and population transfer dynamics,” Phys. Rev. Lett. 95, 023001 (2005).
    [Crossref] [PubMed]
  13. D. Aumiler, T. Ban, H. Skenderovi, and G. Pichler Velocity selective optical pumping of Rb hyperfine lines induced by a train of femtosecond pulses Phys. Rev. Lett.95, 233001 (2005).
    [Crossref] [PubMed]
  14. E. N. Ivanov, S. A. Diddams, and L. Hollberg, “Analysis of noise mechansims limiting the frequency stability of microwave signals generated with a femtosecond laser,” IEEE J. Sel. Top. in Quantum Electron. 9, 1059–1065 (2003).
    [Crossref]
  15. J.J. McFerran, E.N. Ivanov, A. Bartels, G. Wilpers, C.W. Oates, S.A. Diddams, and L. Hollberg, “Low-noise synthesis of microwave signals from an optical source,” Electron. Lett. 41, 650–1 (2005).
    [Crossref]
  16. A. Bartels, S.A. Diddams, C.W. Oates, G. Wilpers, J.C. Bergquist, W.H. Oskay, and L. Hollberg, “Femtosecond-laser-based synthesis of ultrastable microwave signals from optical frequency references,” Opt. Lett. 30, 667–9 (2005).
    [Crossref] [PubMed]
  17. A. Bartels, S.A. Diddams, T.M. Ramond, and L. Hollberg, “Mode-locked laser pulse trains with subfemtosecond timing jitter synchronized to an optical reference oscillator,” Opt. Lett. 28, 663–5 (2003).
    [Crossref] [PubMed]
  18. C. Daussy, O. Lopez, A. Amy-Klien, A Goncharov, M. Guinet, C. Chardonet, F. Narbonneau, M. Lours, D. Chambon, S. Bize, A. Clairon, G. Santarelli, M.E. Tobar, and A.N. Luiten, “Long distance frequency diseemination with a resolution of 10-17,” Phys. Rev. Lett. 94, 203904 (2005).
    [Crossref] [PubMed]
  19. B. C. Young, F. C. Cruz, W. M. Itano, and J. C. Bergquist, “Visible lasers with subhertz linewidths,” Phys. Rev. Lett. 82, 3799–3802 (1999).
    [Crossref]
  20. Ch. Salomon, D. Hills, and J.L. Hall, “Laser stabilization at the mHz-level,” J. Opt. Soc. Am. B 51576–1587, 1988
    [Crossref]
  21. J. Helmcke, G. Wilpers, T. Binnewies, C. Degenhardt, U. Sterr, H. Schnatz, and F. Riehle, “Optical frequency standard based on cold Ca atoms,” IEEE Trans. Instrum. Meas. 52, 250–4 (2003).
    [Crossref]
  22. A. N. Luiten, A. G. Mann, M. Costa, and D. G. Blair, “Power Stabilized Exceptionally High Stability Cryogenic Sapphire Resonator Oscillator,” IEEE Trans. Instrum. Meas. 44, 132–135 (1995).
    [Crossref]
  23. S. Chang, A. G. Mann, and A. N. Luiten, “Improved cryogenic sapphire oscillator with exceptionally high frequency stability,” Electron. Lett. 36, 480–481 (2000).
    [Crossref]
  24. J. D. Jost, J. L. Hall, and J. Ye, “Continuously tunable, precise, single frequency optical signal generator,” Opt. Express 10, 515 (2002), http://www.opticsinfobase.org/abstract.cfm?URI=oe-10-12-515.
    [PubMed]
  25. A. J. Giles, A. G. Mann, S. K. Jones, D. G. Blair, and M. J. Buckingham, “A very high stability sapphire loaded superconducting cavity oscillator,” Physica B 165, 145–146 (1990).
    [Crossref]
  26. A.G. MannA.N. Luiten, “Ultrastable cryogenic microwave oscillators” in Frequency Measurement and Control: Advanced Techniques and Future Trends,ed. (Springer, Berlin, 2001), pp.37–64
  27. M. Bregant, G. Cantatore, F Della Valle, G Ruoso, and G Zavattini, “Frequency locking to a high-finesse Fabry-Perot cavity of a frequency doubled Nd:YAG laser used as the optical phase modulator,” Rev. Sci. Instrum. 73, 4142–4 (2002).
    [Crossref]
  28. J. J. McFerran, M. Maric, and A. N. Luiten, “Efficient detection and control of the offset frequency in a self-referencing optical frequency synthesizer,” App. Phys. B 79, 39–44, (2004).
    [Crossref]
  29. A. Bartels, T. Dekorsy, and H. Kurz, “Femtosecond Ti:sapphire ring laser with a 2 GHz repetition rate and its application in time-resolved spectroscopy,” Opt. Lett. 24, 996–8 (1999).
    [Crossref]
  30. J. A. Barnes, A. R. Chi, L. S. Cutler, D. J. Healey, D. B. Leeson, T. E. McGunigal, J. A. Mullen, W. L. Smith, R. L. Sydnor, R. F. C. Vessot, and G. M. R. Winkler, “Characterization of frequency stability,” IEEE Trans. Instrum. Meas. 20, 105–120 (1971).
    [Crossref]

2006 (1)

V. Gerginov, K. Calkins, C.E. Tanner, J.J. McFerran, S. Diddams, A. Bartels, and L. Hollberg, “Optical frequency measurements of 6s 2S1/2 -6p 2P1/2 (D1) transitions in 133Cs and their impact on the fine-structure constant,” Phys. Rev. A 73, 035601 (2006).
[Crossref]

2005 (7)

V. Gerginov, C. E. Tanner, S. A. Diddams, A. Bartels, and L. Hollberg, “High-resolution spectroscopy with a femtosecond laser frequency comb,” Opt. Lett. 30, 1734–1736 (2005).
[Crossref] [PubMed]

A. Marian, M. C. Stowe, D. Felinto, and J. Ye, “Direct frequency comb measurements of absolute optical frequencies and population transfer dynamics,” Phys. Rev. Lett. 95, 023001 (2005).
[Crossref] [PubMed]

J.J. McFerran, E.N. Ivanov, A. Bartels, G. Wilpers, C.W. Oates, S.A. Diddams, and L. Hollberg, “Low-noise synthesis of microwave signals from an optical source,” Electron. Lett. 41, 650–1 (2005).
[Crossref]

A. Bartels, S.A. Diddams, C.W. Oates, G. Wilpers, J.C. Bergquist, W.H. Oskay, and L. Hollberg, “Femtosecond-laser-based synthesis of ultrastable microwave signals from optical frequency references,” Opt. Lett. 30, 667–9 (2005).
[Crossref] [PubMed]

C. Daussy, O. Lopez, A. Amy-Klien, A Goncharov, M. Guinet, C. Chardonet, F. Narbonneau, M. Lours, D. Chambon, S. Bize, A. Clairon, G. Santarelli, M.E. Tobar, and A.N. Luiten, “Long distance frequency diseemination with a resolution of 10-17,” Phys. Rev. Lett. 94, 203904 (2005).
[Crossref] [PubMed]

C.W. Hoyt, Z.W. Barber, C.W. Oates, T.M. Fortier, S.A. Diddams, and L. Hollberg, “Observation and absolute frequency measurements of the 1S0 -3 P0 optical clock transition in neutral ytterbium,” Phys. Rev. Lett. 95, 083003 (2005).
[Crossref] [PubMed]

H. Schnatz, B. Lipphardt, C. Degenhardt, E Peik, T. Schneider, U. Sterr, and C. Tamm, “Optical frequency measurements using fs-comb generators,” IEEE Trans. Instrum. Meas. 54, 750–753 (2005).
[Crossref]

2004 (3)

V. Gerginov, K Calkins, C. E. Tanner, S. Diddams, A. Bartels, and L. Hollberg, “Optical frequency measurements of 6s 2S1/2 -6p 2P3/2 transition in a 133Cs atomic beam using a femtosecond laser frequency comb,” Phys. Rev. A 70, 042505 (2004).
[Crossref]

A. Marian, M. C. Stowe, J.R. Lawall, D. Felinto, and J. Ye, “United time-frequency spectroscopy for dynamics and global structure,” Science 306, 2063 (2004).
[Crossref] [PubMed]

J. J. McFerran, M. Maric, and A. N. Luiten, “Efficient detection and control of the offset frequency in a self-referencing optical frequency synthesizer,” App. Phys. B 79, 39–44, (2004).
[Crossref]

2003 (3)

J. Helmcke, G. Wilpers, T. Binnewies, C. Degenhardt, U. Sterr, H. Schnatz, and F. Riehle, “Optical frequency standard based on cold Ca atoms,” IEEE Trans. Instrum. Meas. 52, 250–4 (2003).
[Crossref]

E. N. Ivanov, S. A. Diddams, and L. Hollberg, “Analysis of noise mechansims limiting the frequency stability of microwave signals generated with a femtosecond laser,” IEEE J. Sel. Top. in Quantum Electron. 9, 1059–1065 (2003).
[Crossref]

A. Bartels, S.A. Diddams, T.M. Ramond, and L. Hollberg, “Mode-locked laser pulse trains with subfemtosecond timing jitter synchronized to an optical reference oscillator,” Opt. Lett. 28, 663–5 (2003).
[Crossref] [PubMed]

2002 (2)

J. D. Jost, J. L. Hall, and J. Ye, “Continuously tunable, precise, single frequency optical signal generator,” Opt. Express 10, 515 (2002), http://www.opticsinfobase.org/abstract.cfm?URI=oe-10-12-515.
[PubMed]

M. Bregant, G. Cantatore, F Della Valle, G Ruoso, and G Zavattini, “Frequency locking to a high-finesse Fabry-Perot cavity of a frequency doubled Nd:YAG laser used as the optical phase modulator,” Rev. Sci. Instrum. 73, 4142–4 (2002).
[Crossref]

2001 (2)

L. Hollberg, C.W. Oates, E. A. Curtis, E. N. Ivanov, S. A. Diddams, Th. Udem, H. G. Robinson, J. C. Bergquist, R. J. Rafac, W. M. Itano, R. E. Drullinger, and D. J. Wineland, “Optical frequency standards and measurements,” IEEE J. Quantum Electron. 37, 1502–1513 (2001)
[Crossref]

Th. Udem, S. A. Diddams, K. R. Vogel, C.W. Oates, E. A. Curtis, W. D. Lee, W. M. Itano, R. E. Drullinger, J. C. Berquist, and L. Hollberg, “Absolute frequency measurements of the Hg+ and Ca optical clock transitions with a femtosecond laser,” Phys. Rev. Lett. 86, 4996–9 (2001).
[Crossref] [PubMed]

2000 (3)

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzworth, Th. Udem, and T.W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102 (2000)
[Crossref] [PubMed]

R. Holzwarth, Th. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. St J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85, 2264 (2000)
[Crossref] [PubMed]

S. Chang, A. G. Mann, and A. N. Luiten, “Improved cryogenic sapphire oscillator with exceptionally high frequency stability,” Electron. Lett. 36, 480–481 (2000).
[Crossref]

1999 (3)

A. Bartels, T. Dekorsy, and H. Kurz, “Femtosecond Ti:sapphire ring laser with a 2 GHz repetition rate and its application in time-resolved spectroscopy,” Opt. Lett. 24, 996–8 (1999).
[Crossref]

Th. Udem, J. Reichert, R. Holzwarth, and T.W. Hänsch, “Absolute optical frequency measurement of the Cesium D1 line with a mode-locked laser,” Phys. Rev. Lett. 82, 3568–71 (1999)
[Crossref]

B. C. Young, F. C. Cruz, W. M. Itano, and J. C. Bergquist, “Visible lasers with subhertz linewidths,” Phys. Rev. Lett. 82, 3799–3802 (1999).
[Crossref]

1995 (1)

A. N. Luiten, A. G. Mann, M. Costa, and D. G. Blair, “Power Stabilized Exceptionally High Stability Cryogenic Sapphire Resonator Oscillator,” IEEE Trans. Instrum. Meas. 44, 132–135 (1995).
[Crossref]

1990 (1)

A. J. Giles, A. G. Mann, S. K. Jones, D. G. Blair, and M. J. Buckingham, “A very high stability sapphire loaded superconducting cavity oscillator,” Physica B 165, 145–146 (1990).
[Crossref]

1988 (1)

1971 (1)

J. A. Barnes, A. R. Chi, L. S. Cutler, D. J. Healey, D. B. Leeson, T. E. McGunigal, J. A. Mullen, W. L. Smith, R. L. Sydnor, R. F. C. Vessot, and G. M. R. Winkler, “Characterization of frequency stability,” IEEE Trans. Instrum. Meas. 20, 105–120 (1971).
[Crossref]

Amy-Klien, A.

C. Daussy, O. Lopez, A. Amy-Klien, A Goncharov, M. Guinet, C. Chardonet, F. Narbonneau, M. Lours, D. Chambon, S. Bize, A. Clairon, G. Santarelli, M.E. Tobar, and A.N. Luiten, “Long distance frequency diseemination with a resolution of 10-17,” Phys. Rev. Lett. 94, 203904 (2005).
[Crossref] [PubMed]

Aumiler, D.

D. Aumiler, T. Ban, H. Skenderovi, and G. Pichler Velocity selective optical pumping of Rb hyperfine lines induced by a train of femtosecond pulses Phys. Rev. Lett.95, 233001 (2005).
[Crossref] [PubMed]

Ban, T.

D. Aumiler, T. Ban, H. Skenderovi, and G. Pichler Velocity selective optical pumping of Rb hyperfine lines induced by a train of femtosecond pulses Phys. Rev. Lett.95, 233001 (2005).
[Crossref] [PubMed]

Barber, Z.W.

C.W. Hoyt, Z.W. Barber, C.W. Oates, T.M. Fortier, S.A. Diddams, and L. Hollberg, “Observation and absolute frequency measurements of the 1S0 -3 P0 optical clock transition in neutral ytterbium,” Phys. Rev. Lett. 95, 083003 (2005).
[Crossref] [PubMed]

Barnes, J. A.

J. A. Barnes, A. R. Chi, L. S. Cutler, D. J. Healey, D. B. Leeson, T. E. McGunigal, J. A. Mullen, W. L. Smith, R. L. Sydnor, R. F. C. Vessot, and G. M. R. Winkler, “Characterization of frequency stability,” IEEE Trans. Instrum. Meas. 20, 105–120 (1971).
[Crossref]

Bartels, A.

V. Gerginov, K. Calkins, C.E. Tanner, J.J. McFerran, S. Diddams, A. Bartels, and L. Hollberg, “Optical frequency measurements of 6s 2S1/2 -6p 2P1/2 (D1) transitions in 133Cs and their impact on the fine-structure constant,” Phys. Rev. A 73, 035601 (2006).
[Crossref]

J.J. McFerran, E.N. Ivanov, A. Bartels, G. Wilpers, C.W. Oates, S.A. Diddams, and L. Hollberg, “Low-noise synthesis of microwave signals from an optical source,” Electron. Lett. 41, 650–1 (2005).
[Crossref]

A. Bartels, S.A. Diddams, C.W. Oates, G. Wilpers, J.C. Bergquist, W.H. Oskay, and L. Hollberg, “Femtosecond-laser-based synthesis of ultrastable microwave signals from optical frequency references,” Opt. Lett. 30, 667–9 (2005).
[Crossref] [PubMed]

V. Gerginov, C. E. Tanner, S. A. Diddams, A. Bartels, and L. Hollberg, “High-resolution spectroscopy with a femtosecond laser frequency comb,” Opt. Lett. 30, 1734–1736 (2005).
[Crossref] [PubMed]

V. Gerginov, K Calkins, C. E. Tanner, S. Diddams, A. Bartels, and L. Hollberg, “Optical frequency measurements of 6s 2S1/2 -6p 2P3/2 transition in a 133Cs atomic beam using a femtosecond laser frequency comb,” Phys. Rev. A 70, 042505 (2004).
[Crossref]

A. Bartels, S.A. Diddams, T.M. Ramond, and L. Hollberg, “Mode-locked laser pulse trains with subfemtosecond timing jitter synchronized to an optical reference oscillator,” Opt. Lett. 28, 663–5 (2003).
[Crossref] [PubMed]

A. Bartels, T. Dekorsy, and H. Kurz, “Femtosecond Ti:sapphire ring laser with a 2 GHz repetition rate and its application in time-resolved spectroscopy,” Opt. Lett. 24, 996–8 (1999).
[Crossref]

Bergquist, J. C.

L. Hollberg, C.W. Oates, E. A. Curtis, E. N. Ivanov, S. A. Diddams, Th. Udem, H. G. Robinson, J. C. Bergquist, R. J. Rafac, W. M. Itano, R. E. Drullinger, and D. J. Wineland, “Optical frequency standards and measurements,” IEEE J. Quantum Electron. 37, 1502–1513 (2001)
[Crossref]

B. C. Young, F. C. Cruz, W. M. Itano, and J. C. Bergquist, “Visible lasers with subhertz linewidths,” Phys. Rev. Lett. 82, 3799–3802 (1999).
[Crossref]

Bergquist, J.C.

Berquist, J. C.

Th. Udem, S. A. Diddams, K. R. Vogel, C.W. Oates, E. A. Curtis, W. D. Lee, W. M. Itano, R. E. Drullinger, J. C. Berquist, and L. Hollberg, “Absolute frequency measurements of the Hg+ and Ca optical clock transitions with a femtosecond laser,” Phys. Rev. Lett. 86, 4996–9 (2001).
[Crossref] [PubMed]

Binnewies, T.

J. Helmcke, G. Wilpers, T. Binnewies, C. Degenhardt, U. Sterr, H. Schnatz, and F. Riehle, “Optical frequency standard based on cold Ca atoms,” IEEE Trans. Instrum. Meas. 52, 250–4 (2003).
[Crossref]

Bize, S.

C. Daussy, O. Lopez, A. Amy-Klien, A Goncharov, M. Guinet, C. Chardonet, F. Narbonneau, M. Lours, D. Chambon, S. Bize, A. Clairon, G. Santarelli, M.E. Tobar, and A.N. Luiten, “Long distance frequency diseemination with a resolution of 10-17,” Phys. Rev. Lett. 94, 203904 (2005).
[Crossref] [PubMed]

Blair, D. G.

A. N. Luiten, A. G. Mann, M. Costa, and D. G. Blair, “Power Stabilized Exceptionally High Stability Cryogenic Sapphire Resonator Oscillator,” IEEE Trans. Instrum. Meas. 44, 132–135 (1995).
[Crossref]

A. J. Giles, A. G. Mann, S. K. Jones, D. G. Blair, and M. J. Buckingham, “A very high stability sapphire loaded superconducting cavity oscillator,” Physica B 165, 145–146 (1990).
[Crossref]

Bregant, M.

M. Bregant, G. Cantatore, F Della Valle, G Ruoso, and G Zavattini, “Frequency locking to a high-finesse Fabry-Perot cavity of a frequency doubled Nd:YAG laser used as the optical phase modulator,” Rev. Sci. Instrum. 73, 4142–4 (2002).
[Crossref]

Buckingham, M. J.

A. J. Giles, A. G. Mann, S. K. Jones, D. G. Blair, and M. J. Buckingham, “A very high stability sapphire loaded superconducting cavity oscillator,” Physica B 165, 145–146 (1990).
[Crossref]

Calkins, K

V. Gerginov, K Calkins, C. E. Tanner, S. Diddams, A. Bartels, and L. Hollberg, “Optical frequency measurements of 6s 2S1/2 -6p 2P3/2 transition in a 133Cs atomic beam using a femtosecond laser frequency comb,” Phys. Rev. A 70, 042505 (2004).
[Crossref]

Calkins, K.

V. Gerginov, K. Calkins, C.E. Tanner, J.J. McFerran, S. Diddams, A. Bartels, and L. Hollberg, “Optical frequency measurements of 6s 2S1/2 -6p 2P1/2 (D1) transitions in 133Cs and their impact on the fine-structure constant,” Phys. Rev. A 73, 035601 (2006).
[Crossref]

Cantatore, G.

M. Bregant, G. Cantatore, F Della Valle, G Ruoso, and G Zavattini, “Frequency locking to a high-finesse Fabry-Perot cavity of a frequency doubled Nd:YAG laser used as the optical phase modulator,” Rev. Sci. Instrum. 73, 4142–4 (2002).
[Crossref]

Chambon, D.

C. Daussy, O. Lopez, A. Amy-Klien, A Goncharov, M. Guinet, C. Chardonet, F. Narbonneau, M. Lours, D. Chambon, S. Bize, A. Clairon, G. Santarelli, M.E. Tobar, and A.N. Luiten, “Long distance frequency diseemination with a resolution of 10-17,” Phys. Rev. Lett. 94, 203904 (2005).
[Crossref] [PubMed]

Chang, S.

S. Chang, A. G. Mann, and A. N. Luiten, “Improved cryogenic sapphire oscillator with exceptionally high frequency stability,” Electron. Lett. 36, 480–481 (2000).
[Crossref]

Chardonet, C.

C. Daussy, O. Lopez, A. Amy-Klien, A Goncharov, M. Guinet, C. Chardonet, F. Narbonneau, M. Lours, D. Chambon, S. Bize, A. Clairon, G. Santarelli, M.E. Tobar, and A.N. Luiten, “Long distance frequency diseemination with a resolution of 10-17,” Phys. Rev. Lett. 94, 203904 (2005).
[Crossref] [PubMed]

Chi, A. R.

J. A. Barnes, A. R. Chi, L. S. Cutler, D. J. Healey, D. B. Leeson, T. E. McGunigal, J. A. Mullen, W. L. Smith, R. L. Sydnor, R. F. C. Vessot, and G. M. R. Winkler, “Characterization of frequency stability,” IEEE Trans. Instrum. Meas. 20, 105–120 (1971).
[Crossref]

Clairon, A.

C. Daussy, O. Lopez, A. Amy-Klien, A Goncharov, M. Guinet, C. Chardonet, F. Narbonneau, M. Lours, D. Chambon, S. Bize, A. Clairon, G. Santarelli, M.E. Tobar, and A.N. Luiten, “Long distance frequency diseemination with a resolution of 10-17,” Phys. Rev. Lett. 94, 203904 (2005).
[Crossref] [PubMed]

Costa, M.

A. N. Luiten, A. G. Mann, M. Costa, and D. G. Blair, “Power Stabilized Exceptionally High Stability Cryogenic Sapphire Resonator Oscillator,” IEEE Trans. Instrum. Meas. 44, 132–135 (1995).
[Crossref]

Cruz, F. C.

B. C. Young, F. C. Cruz, W. M. Itano, and J. C. Bergquist, “Visible lasers with subhertz linewidths,” Phys. Rev. Lett. 82, 3799–3802 (1999).
[Crossref]

Cundiff, S. T.

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzworth, Th. Udem, and T.W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102 (2000)
[Crossref] [PubMed]

Curtis, E. A.

L. Hollberg, C.W. Oates, E. A. Curtis, E. N. Ivanov, S. A. Diddams, Th. Udem, H. G. Robinson, J. C. Bergquist, R. J. Rafac, W. M. Itano, R. E. Drullinger, and D. J. Wineland, “Optical frequency standards and measurements,” IEEE J. Quantum Electron. 37, 1502–1513 (2001)
[Crossref]

Th. Udem, S. A. Diddams, K. R. Vogel, C.W. Oates, E. A. Curtis, W. D. Lee, W. M. Itano, R. E. Drullinger, J. C. Berquist, and L. Hollberg, “Absolute frequency measurements of the Hg+ and Ca optical clock transitions with a femtosecond laser,” Phys. Rev. Lett. 86, 4996–9 (2001).
[Crossref] [PubMed]

Cutler, L. S.

J. A. Barnes, A. R. Chi, L. S. Cutler, D. J. Healey, D. B. Leeson, T. E. McGunigal, J. A. Mullen, W. L. Smith, R. L. Sydnor, R. F. C. Vessot, and G. M. R. Winkler, “Characterization of frequency stability,” IEEE Trans. Instrum. Meas. 20, 105–120 (1971).
[Crossref]

Daussy, C.

C. Daussy, O. Lopez, A. Amy-Klien, A Goncharov, M. Guinet, C. Chardonet, F. Narbonneau, M. Lours, D. Chambon, S. Bize, A. Clairon, G. Santarelli, M.E. Tobar, and A.N. Luiten, “Long distance frequency diseemination with a resolution of 10-17,” Phys. Rev. Lett. 94, 203904 (2005).
[Crossref] [PubMed]

Degenhardt, C.

H. Schnatz, B. Lipphardt, C. Degenhardt, E Peik, T. Schneider, U. Sterr, and C. Tamm, “Optical frequency measurements using fs-comb generators,” IEEE Trans. Instrum. Meas. 54, 750–753 (2005).
[Crossref]

J. Helmcke, G. Wilpers, T. Binnewies, C. Degenhardt, U. Sterr, H. Schnatz, and F. Riehle, “Optical frequency standard based on cold Ca atoms,” IEEE Trans. Instrum. Meas. 52, 250–4 (2003).
[Crossref]

Dekorsy, T.

Della Valle, F

M. Bregant, G. Cantatore, F Della Valle, G Ruoso, and G Zavattini, “Frequency locking to a high-finesse Fabry-Perot cavity of a frequency doubled Nd:YAG laser used as the optical phase modulator,” Rev. Sci. Instrum. 73, 4142–4 (2002).
[Crossref]

Diddams, S.

V. Gerginov, K. Calkins, C.E. Tanner, J.J. McFerran, S. Diddams, A. Bartels, and L. Hollberg, “Optical frequency measurements of 6s 2S1/2 -6p 2P1/2 (D1) transitions in 133Cs and their impact on the fine-structure constant,” Phys. Rev. A 73, 035601 (2006).
[Crossref]

V. Gerginov, K Calkins, C. E. Tanner, S. Diddams, A. Bartels, and L. Hollberg, “Optical frequency measurements of 6s 2S1/2 -6p 2P3/2 transition in a 133Cs atomic beam using a femtosecond laser frequency comb,” Phys. Rev. A 70, 042505 (2004).
[Crossref]

Diddams, S. A.

V. Gerginov, C. E. Tanner, S. A. Diddams, A. Bartels, and L. Hollberg, “High-resolution spectroscopy with a femtosecond laser frequency comb,” Opt. Lett. 30, 1734–1736 (2005).
[Crossref] [PubMed]

E. N. Ivanov, S. A. Diddams, and L. Hollberg, “Analysis of noise mechansims limiting the frequency stability of microwave signals generated with a femtosecond laser,” IEEE J. Sel. Top. in Quantum Electron. 9, 1059–1065 (2003).
[Crossref]

L. Hollberg, C.W. Oates, E. A. Curtis, E. N. Ivanov, S. A. Diddams, Th. Udem, H. G. Robinson, J. C. Bergquist, R. J. Rafac, W. M. Itano, R. E. Drullinger, and D. J. Wineland, “Optical frequency standards and measurements,” IEEE J. Quantum Electron. 37, 1502–1513 (2001)
[Crossref]

Th. Udem, S. A. Diddams, K. R. Vogel, C.W. Oates, E. A. Curtis, W. D. Lee, W. M. Itano, R. E. Drullinger, J. C. Berquist, and L. Hollberg, “Absolute frequency measurements of the Hg+ and Ca optical clock transitions with a femtosecond laser,” Phys. Rev. Lett. 86, 4996–9 (2001).
[Crossref] [PubMed]

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzworth, Th. Udem, and T.W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102 (2000)
[Crossref] [PubMed]

Diddams, S.A.

C.W. Hoyt, Z.W. Barber, C.W. Oates, T.M. Fortier, S.A. Diddams, and L. Hollberg, “Observation and absolute frequency measurements of the 1S0 -3 P0 optical clock transition in neutral ytterbium,” Phys. Rev. Lett. 95, 083003 (2005).
[Crossref] [PubMed]

J.J. McFerran, E.N. Ivanov, A. Bartels, G. Wilpers, C.W. Oates, S.A. Diddams, and L. Hollberg, “Low-noise synthesis of microwave signals from an optical source,” Electron. Lett. 41, 650–1 (2005).
[Crossref]

A. Bartels, S.A. Diddams, C.W. Oates, G. Wilpers, J.C. Bergquist, W.H. Oskay, and L. Hollberg, “Femtosecond-laser-based synthesis of ultrastable microwave signals from optical frequency references,” Opt. Lett. 30, 667–9 (2005).
[Crossref] [PubMed]

A. Bartels, S.A. Diddams, T.M. Ramond, and L. Hollberg, “Mode-locked laser pulse trains with subfemtosecond timing jitter synchronized to an optical reference oscillator,” Opt. Lett. 28, 663–5 (2003).
[Crossref] [PubMed]

Drullinger, R. E.

Th. Udem, S. A. Diddams, K. R. Vogel, C.W. Oates, E. A. Curtis, W. D. Lee, W. M. Itano, R. E. Drullinger, J. C. Berquist, and L. Hollberg, “Absolute frequency measurements of the Hg+ and Ca optical clock transitions with a femtosecond laser,” Phys. Rev. Lett. 86, 4996–9 (2001).
[Crossref] [PubMed]

L. Hollberg, C.W. Oates, E. A. Curtis, E. N. Ivanov, S. A. Diddams, Th. Udem, H. G. Robinson, J. C. Bergquist, R. J. Rafac, W. M. Itano, R. E. Drullinger, and D. J. Wineland, “Optical frequency standards and measurements,” IEEE J. Quantum Electron. 37, 1502–1513 (2001)
[Crossref]

Felinto, D.

A. Marian, M. C. Stowe, D. Felinto, and J. Ye, “Direct frequency comb measurements of absolute optical frequencies and population transfer dynamics,” Phys. Rev. Lett. 95, 023001 (2005).
[Crossref] [PubMed]

A. Marian, M. C. Stowe, J.R. Lawall, D. Felinto, and J. Ye, “United time-frequency spectroscopy for dynamics and global structure,” Science 306, 2063 (2004).
[Crossref] [PubMed]

Fortier, T.M.

C.W. Hoyt, Z.W. Barber, C.W. Oates, T.M. Fortier, S.A. Diddams, and L. Hollberg, “Observation and absolute frequency measurements of the 1S0 -3 P0 optical clock transition in neutral ytterbium,” Phys. Rev. Lett. 95, 083003 (2005).
[Crossref] [PubMed]

Gerginov, V.

V. Gerginov, K. Calkins, C.E. Tanner, J.J. McFerran, S. Diddams, A. Bartels, and L. Hollberg, “Optical frequency measurements of 6s 2S1/2 -6p 2P1/2 (D1) transitions in 133Cs and their impact on the fine-structure constant,” Phys. Rev. A 73, 035601 (2006).
[Crossref]

V. Gerginov, C. E. Tanner, S. A. Diddams, A. Bartels, and L. Hollberg, “High-resolution spectroscopy with a femtosecond laser frequency comb,” Opt. Lett. 30, 1734–1736 (2005).
[Crossref] [PubMed]

V. Gerginov, K Calkins, C. E. Tanner, S. Diddams, A. Bartels, and L. Hollberg, “Optical frequency measurements of 6s 2S1/2 -6p 2P3/2 transition in a 133Cs atomic beam using a femtosecond laser frequency comb,” Phys. Rev. A 70, 042505 (2004).
[Crossref]

Giles, A. J.

A. J. Giles, A. G. Mann, S. K. Jones, D. G. Blair, and M. J. Buckingham, “A very high stability sapphire loaded superconducting cavity oscillator,” Physica B 165, 145–146 (1990).
[Crossref]

Goncharov, A

C. Daussy, O. Lopez, A. Amy-Klien, A Goncharov, M. Guinet, C. Chardonet, F. Narbonneau, M. Lours, D. Chambon, S. Bize, A. Clairon, G. Santarelli, M.E. Tobar, and A.N. Luiten, “Long distance frequency diseemination with a resolution of 10-17,” Phys. Rev. Lett. 94, 203904 (2005).
[Crossref] [PubMed]

Guinet, M.

C. Daussy, O. Lopez, A. Amy-Klien, A Goncharov, M. Guinet, C. Chardonet, F. Narbonneau, M. Lours, D. Chambon, S. Bize, A. Clairon, G. Santarelli, M.E. Tobar, and A.N. Luiten, “Long distance frequency diseemination with a resolution of 10-17,” Phys. Rev. Lett. 94, 203904 (2005).
[Crossref] [PubMed]

Hall, J. L.

J. D. Jost, J. L. Hall, and J. Ye, “Continuously tunable, precise, single frequency optical signal generator,” Opt. Express 10, 515 (2002), http://www.opticsinfobase.org/abstract.cfm?URI=oe-10-12-515.
[PubMed]

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzworth, Th. Udem, and T.W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102 (2000)
[Crossref] [PubMed]

Hall, J.L.

Hänsch, T. W.

R. Holzwarth, Th. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. St J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85, 2264 (2000)
[Crossref] [PubMed]

Hänsch, T.W.

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzworth, Th. Udem, and T.W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102 (2000)
[Crossref] [PubMed]

Th. Udem, J. Reichert, R. Holzwarth, and T.W. Hänsch, “Absolute optical frequency measurement of the Cesium D1 line with a mode-locked laser,” Phys. Rev. Lett. 82, 3568–71 (1999)
[Crossref]

Healey, D. J.

J. A. Barnes, A. R. Chi, L. S. Cutler, D. J. Healey, D. B. Leeson, T. E. McGunigal, J. A. Mullen, W. L. Smith, R. L. Sydnor, R. F. C. Vessot, and G. M. R. Winkler, “Characterization of frequency stability,” IEEE Trans. Instrum. Meas. 20, 105–120 (1971).
[Crossref]

Helmcke, J.

J. Helmcke, G. Wilpers, T. Binnewies, C. Degenhardt, U. Sterr, H. Schnatz, and F. Riehle, “Optical frequency standard based on cold Ca atoms,” IEEE Trans. Instrum. Meas. 52, 250–4 (2003).
[Crossref]

Hills, D.

Hollberg, L.

V. Gerginov, K. Calkins, C.E. Tanner, J.J. McFerran, S. Diddams, A. Bartels, and L. Hollberg, “Optical frequency measurements of 6s 2S1/2 -6p 2P1/2 (D1) transitions in 133Cs and their impact on the fine-structure constant,” Phys. Rev. A 73, 035601 (2006).
[Crossref]

C.W. Hoyt, Z.W. Barber, C.W. Oates, T.M. Fortier, S.A. Diddams, and L. Hollberg, “Observation and absolute frequency measurements of the 1S0 -3 P0 optical clock transition in neutral ytterbium,” Phys. Rev. Lett. 95, 083003 (2005).
[Crossref] [PubMed]

J.J. McFerran, E.N. Ivanov, A. Bartels, G. Wilpers, C.W. Oates, S.A. Diddams, and L. Hollberg, “Low-noise synthesis of microwave signals from an optical source,” Electron. Lett. 41, 650–1 (2005).
[Crossref]

A. Bartels, S.A. Diddams, C.W. Oates, G. Wilpers, J.C. Bergquist, W.H. Oskay, and L. Hollberg, “Femtosecond-laser-based synthesis of ultrastable microwave signals from optical frequency references,” Opt. Lett. 30, 667–9 (2005).
[Crossref] [PubMed]

V. Gerginov, C. E. Tanner, S. A. Diddams, A. Bartels, and L. Hollberg, “High-resolution spectroscopy with a femtosecond laser frequency comb,” Opt. Lett. 30, 1734–1736 (2005).
[Crossref] [PubMed]

V. Gerginov, K Calkins, C. E. Tanner, S. Diddams, A. Bartels, and L. Hollberg, “Optical frequency measurements of 6s 2S1/2 -6p 2P3/2 transition in a 133Cs atomic beam using a femtosecond laser frequency comb,” Phys. Rev. A 70, 042505 (2004).
[Crossref]

E. N. Ivanov, S. A. Diddams, and L. Hollberg, “Analysis of noise mechansims limiting the frequency stability of microwave signals generated with a femtosecond laser,” IEEE J. Sel. Top. in Quantum Electron. 9, 1059–1065 (2003).
[Crossref]

A. Bartels, S.A. Diddams, T.M. Ramond, and L. Hollberg, “Mode-locked laser pulse trains with subfemtosecond timing jitter synchronized to an optical reference oscillator,” Opt. Lett. 28, 663–5 (2003).
[Crossref] [PubMed]

Th. Udem, S. A. Diddams, K. R. Vogel, C.W. Oates, E. A. Curtis, W. D. Lee, W. M. Itano, R. E. Drullinger, J. C. Berquist, and L. Hollberg, “Absolute frequency measurements of the Hg+ and Ca optical clock transitions with a femtosecond laser,” Phys. Rev. Lett. 86, 4996–9 (2001).
[Crossref] [PubMed]

L. Hollberg, C.W. Oates, E. A. Curtis, E. N. Ivanov, S. A. Diddams, Th. Udem, H. G. Robinson, J. C. Bergquist, R. J. Rafac, W. M. Itano, R. E. Drullinger, and D. J. Wineland, “Optical frequency standards and measurements,” IEEE J. Quantum Electron. 37, 1502–1513 (2001)
[Crossref]

Holzwarth, R.

R. Holzwarth, Th. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. St J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85, 2264 (2000)
[Crossref] [PubMed]

Th. Udem, J. Reichert, R. Holzwarth, and T.W. Hänsch, “Absolute optical frequency measurement of the Cesium D1 line with a mode-locked laser,” Phys. Rev. Lett. 82, 3568–71 (1999)
[Crossref]

Holzworth, R.

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzworth, Th. Udem, and T.W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102 (2000)
[Crossref] [PubMed]

Hoyt, C.W.

C.W. Hoyt, Z.W. Barber, C.W. Oates, T.M. Fortier, S.A. Diddams, and L. Hollberg, “Observation and absolute frequency measurements of the 1S0 -3 P0 optical clock transition in neutral ytterbium,” Phys. Rev. Lett. 95, 083003 (2005).
[Crossref] [PubMed]

Itano, W. M.

Th. Udem, S. A. Diddams, K. R. Vogel, C.W. Oates, E. A. Curtis, W. D. Lee, W. M. Itano, R. E. Drullinger, J. C. Berquist, and L. Hollberg, “Absolute frequency measurements of the Hg+ and Ca optical clock transitions with a femtosecond laser,” Phys. Rev. Lett. 86, 4996–9 (2001).
[Crossref] [PubMed]

L. Hollberg, C.W. Oates, E. A. Curtis, E. N. Ivanov, S. A. Diddams, Th. Udem, H. G. Robinson, J. C. Bergquist, R. J. Rafac, W. M. Itano, R. E. Drullinger, and D. J. Wineland, “Optical frequency standards and measurements,” IEEE J. Quantum Electron. 37, 1502–1513 (2001)
[Crossref]

B. C. Young, F. C. Cruz, W. M. Itano, and J. C. Bergquist, “Visible lasers with subhertz linewidths,” Phys. Rev. Lett. 82, 3799–3802 (1999).
[Crossref]

Ivanov, E. N.

E. N. Ivanov, S. A. Diddams, and L. Hollberg, “Analysis of noise mechansims limiting the frequency stability of microwave signals generated with a femtosecond laser,” IEEE J. Sel. Top. in Quantum Electron. 9, 1059–1065 (2003).
[Crossref]

L. Hollberg, C.W. Oates, E. A. Curtis, E. N. Ivanov, S. A. Diddams, Th. Udem, H. G. Robinson, J. C. Bergquist, R. J. Rafac, W. M. Itano, R. E. Drullinger, and D. J. Wineland, “Optical frequency standards and measurements,” IEEE J. Quantum Electron. 37, 1502–1513 (2001)
[Crossref]

Ivanov, E.N.

J.J. McFerran, E.N. Ivanov, A. Bartels, G. Wilpers, C.W. Oates, S.A. Diddams, and L. Hollberg, “Low-noise synthesis of microwave signals from an optical source,” Electron. Lett. 41, 650–1 (2005).
[Crossref]

Jones, D. J.

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzworth, Th. Udem, and T.W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102 (2000)
[Crossref] [PubMed]

Jones, S. K.

A. J. Giles, A. G. Mann, S. K. Jones, D. G. Blair, and M. J. Buckingham, “A very high stability sapphire loaded superconducting cavity oscillator,” Physica B 165, 145–146 (1990).
[Crossref]

Jost, J. D.

Knight, J. C.

R. Holzwarth, Th. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. St J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85, 2264 (2000)
[Crossref] [PubMed]

Kurz, H.

Lawall, J.R.

A. Marian, M. C. Stowe, J.R. Lawall, D. Felinto, and J. Ye, “United time-frequency spectroscopy for dynamics and global structure,” Science 306, 2063 (2004).
[Crossref] [PubMed]

Lee, W. D.

Th. Udem, S. A. Diddams, K. R. Vogel, C.W. Oates, E. A. Curtis, W. D. Lee, W. M. Itano, R. E. Drullinger, J. C. Berquist, and L. Hollberg, “Absolute frequency measurements of the Hg+ and Ca optical clock transitions with a femtosecond laser,” Phys. Rev. Lett. 86, 4996–9 (2001).
[Crossref] [PubMed]

Leeson, D. B.

J. A. Barnes, A. R. Chi, L. S. Cutler, D. J. Healey, D. B. Leeson, T. E. McGunigal, J. A. Mullen, W. L. Smith, R. L. Sydnor, R. F. C. Vessot, and G. M. R. Winkler, “Characterization of frequency stability,” IEEE Trans. Instrum. Meas. 20, 105–120 (1971).
[Crossref]

Lipphardt, B.

H. Schnatz, B. Lipphardt, C. Degenhardt, E Peik, T. Schneider, U. Sterr, and C. Tamm, “Optical frequency measurements using fs-comb generators,” IEEE Trans. Instrum. Meas. 54, 750–753 (2005).
[Crossref]

Lopez, O.

C. Daussy, O. Lopez, A. Amy-Klien, A Goncharov, M. Guinet, C. Chardonet, F. Narbonneau, M. Lours, D. Chambon, S. Bize, A. Clairon, G. Santarelli, M.E. Tobar, and A.N. Luiten, “Long distance frequency diseemination with a resolution of 10-17,” Phys. Rev. Lett. 94, 203904 (2005).
[Crossref] [PubMed]

Lours, M.

C. Daussy, O. Lopez, A. Amy-Klien, A Goncharov, M. Guinet, C. Chardonet, F. Narbonneau, M. Lours, D. Chambon, S. Bize, A. Clairon, G. Santarelli, M.E. Tobar, and A.N. Luiten, “Long distance frequency diseemination with a resolution of 10-17,” Phys. Rev. Lett. 94, 203904 (2005).
[Crossref] [PubMed]

Luiten, A. N.

J. J. McFerran, M. Maric, and A. N. Luiten, “Efficient detection and control of the offset frequency in a self-referencing optical frequency synthesizer,” App. Phys. B 79, 39–44, (2004).
[Crossref]

S. Chang, A. G. Mann, and A. N. Luiten, “Improved cryogenic sapphire oscillator with exceptionally high frequency stability,” Electron. Lett. 36, 480–481 (2000).
[Crossref]

A. N. Luiten, A. G. Mann, M. Costa, and D. G. Blair, “Power Stabilized Exceptionally High Stability Cryogenic Sapphire Resonator Oscillator,” IEEE Trans. Instrum. Meas. 44, 132–135 (1995).
[Crossref]

Luiten, A.N.

C. Daussy, O. Lopez, A. Amy-Klien, A Goncharov, M. Guinet, C. Chardonet, F. Narbonneau, M. Lours, D. Chambon, S. Bize, A. Clairon, G. Santarelli, M.E. Tobar, and A.N. Luiten, “Long distance frequency diseemination with a resolution of 10-17,” Phys. Rev. Lett. 94, 203904 (2005).
[Crossref] [PubMed]

Mann, A. G.

S. Chang, A. G. Mann, and A. N. Luiten, “Improved cryogenic sapphire oscillator with exceptionally high frequency stability,” Electron. Lett. 36, 480–481 (2000).
[Crossref]

A. N. Luiten, A. G. Mann, M. Costa, and D. G. Blair, “Power Stabilized Exceptionally High Stability Cryogenic Sapphire Resonator Oscillator,” IEEE Trans. Instrum. Meas. 44, 132–135 (1995).
[Crossref]

A. J. Giles, A. G. Mann, S. K. Jones, D. G. Blair, and M. J. Buckingham, “A very high stability sapphire loaded superconducting cavity oscillator,” Physica B 165, 145–146 (1990).
[Crossref]

Mann, A.G.

A.G. MannA.N. Luiten, “Ultrastable cryogenic microwave oscillators” in Frequency Measurement and Control: Advanced Techniques and Future Trends,ed. (Springer, Berlin, 2001), pp.37–64

Marian, A.

A. Marian, M. C. Stowe, D. Felinto, and J. Ye, “Direct frequency comb measurements of absolute optical frequencies and population transfer dynamics,” Phys. Rev. Lett. 95, 023001 (2005).
[Crossref] [PubMed]

A. Marian, M. C. Stowe, J.R. Lawall, D. Felinto, and J. Ye, “United time-frequency spectroscopy for dynamics and global structure,” Science 306, 2063 (2004).
[Crossref] [PubMed]

Maric, M.

J. J. McFerran, M. Maric, and A. N. Luiten, “Efficient detection and control of the offset frequency in a self-referencing optical frequency synthesizer,” App. Phys. B 79, 39–44, (2004).
[Crossref]

McFerran, J. J.

J. J. McFerran, M. Maric, and A. N. Luiten, “Efficient detection and control of the offset frequency in a self-referencing optical frequency synthesizer,” App. Phys. B 79, 39–44, (2004).
[Crossref]

McFerran, J.J.

V. Gerginov, K. Calkins, C.E. Tanner, J.J. McFerran, S. Diddams, A. Bartels, and L. Hollberg, “Optical frequency measurements of 6s 2S1/2 -6p 2P1/2 (D1) transitions in 133Cs and their impact on the fine-structure constant,” Phys. Rev. A 73, 035601 (2006).
[Crossref]

J.J. McFerran, E.N. Ivanov, A. Bartels, G. Wilpers, C.W. Oates, S.A. Diddams, and L. Hollberg, “Low-noise synthesis of microwave signals from an optical source,” Electron. Lett. 41, 650–1 (2005).
[Crossref]

McGunigal, T. E.

J. A. Barnes, A. R. Chi, L. S. Cutler, D. J. Healey, D. B. Leeson, T. E. McGunigal, J. A. Mullen, W. L. Smith, R. L. Sydnor, R. F. C. Vessot, and G. M. R. Winkler, “Characterization of frequency stability,” IEEE Trans. Instrum. Meas. 20, 105–120 (1971).
[Crossref]

Mullen, J. A.

J. A. Barnes, A. R. Chi, L. S. Cutler, D. J. Healey, D. B. Leeson, T. E. McGunigal, J. A. Mullen, W. L. Smith, R. L. Sydnor, R. F. C. Vessot, and G. M. R. Winkler, “Characterization of frequency stability,” IEEE Trans. Instrum. Meas. 20, 105–120 (1971).
[Crossref]

Narbonneau, F.

C. Daussy, O. Lopez, A. Amy-Klien, A Goncharov, M. Guinet, C. Chardonet, F. Narbonneau, M. Lours, D. Chambon, S. Bize, A. Clairon, G. Santarelli, M.E. Tobar, and A.N. Luiten, “Long distance frequency diseemination with a resolution of 10-17,” Phys. Rev. Lett. 94, 203904 (2005).
[Crossref] [PubMed]

Oates, C.W.

J.J. McFerran, E.N. Ivanov, A. Bartels, G. Wilpers, C.W. Oates, S.A. Diddams, and L. Hollberg, “Low-noise synthesis of microwave signals from an optical source,” Electron. Lett. 41, 650–1 (2005).
[Crossref]

C.W. Hoyt, Z.W. Barber, C.W. Oates, T.M. Fortier, S.A. Diddams, and L. Hollberg, “Observation and absolute frequency measurements of the 1S0 -3 P0 optical clock transition in neutral ytterbium,” Phys. Rev. Lett. 95, 083003 (2005).
[Crossref] [PubMed]

A. Bartels, S.A. Diddams, C.W. Oates, G. Wilpers, J.C. Bergquist, W.H. Oskay, and L. Hollberg, “Femtosecond-laser-based synthesis of ultrastable microwave signals from optical frequency references,” Opt. Lett. 30, 667–9 (2005).
[Crossref] [PubMed]

Th. Udem, S. A. Diddams, K. R. Vogel, C.W. Oates, E. A. Curtis, W. D. Lee, W. M. Itano, R. E. Drullinger, J. C. Berquist, and L. Hollberg, “Absolute frequency measurements of the Hg+ and Ca optical clock transitions with a femtosecond laser,” Phys. Rev. Lett. 86, 4996–9 (2001).
[Crossref] [PubMed]

L. Hollberg, C.W. Oates, E. A. Curtis, E. N. Ivanov, S. A. Diddams, Th. Udem, H. G. Robinson, J. C. Bergquist, R. J. Rafac, W. M. Itano, R. E. Drullinger, and D. J. Wineland, “Optical frequency standards and measurements,” IEEE J. Quantum Electron. 37, 1502–1513 (2001)
[Crossref]

Oskay, W.H.

Peik, E

H. Schnatz, B. Lipphardt, C. Degenhardt, E Peik, T. Schneider, U. Sterr, and C. Tamm, “Optical frequency measurements using fs-comb generators,” IEEE Trans. Instrum. Meas. 54, 750–753 (2005).
[Crossref]

Pichler, G.

D. Aumiler, T. Ban, H. Skenderovi, and G. Pichler Velocity selective optical pumping of Rb hyperfine lines induced by a train of femtosecond pulses Phys. Rev. Lett.95, 233001 (2005).
[Crossref] [PubMed]

Rafac, R. J.

L. Hollberg, C.W. Oates, E. A. Curtis, E. N. Ivanov, S. A. Diddams, Th. Udem, H. G. Robinson, J. C. Bergquist, R. J. Rafac, W. M. Itano, R. E. Drullinger, and D. J. Wineland, “Optical frequency standards and measurements,” IEEE J. Quantum Electron. 37, 1502–1513 (2001)
[Crossref]

Ramond, T.M.

Ranka, J. K.

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzworth, Th. Udem, and T.W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102 (2000)
[Crossref] [PubMed]

Reichert, J.

Th. Udem, J. Reichert, R. Holzwarth, and T.W. Hänsch, “Absolute optical frequency measurement of the Cesium D1 line with a mode-locked laser,” Phys. Rev. Lett. 82, 3568–71 (1999)
[Crossref]

Riehle, F.

J. Helmcke, G. Wilpers, T. Binnewies, C. Degenhardt, U. Sterr, H. Schnatz, and F. Riehle, “Optical frequency standard based on cold Ca atoms,” IEEE Trans. Instrum. Meas. 52, 250–4 (2003).
[Crossref]

Robinson, H. G.

L. Hollberg, C.W. Oates, E. A. Curtis, E. N. Ivanov, S. A. Diddams, Th. Udem, H. G. Robinson, J. C. Bergquist, R. J. Rafac, W. M. Itano, R. E. Drullinger, and D. J. Wineland, “Optical frequency standards and measurements,” IEEE J. Quantum Electron. 37, 1502–1513 (2001)
[Crossref]

Ruoso, G

M. Bregant, G. Cantatore, F Della Valle, G Ruoso, and G Zavattini, “Frequency locking to a high-finesse Fabry-Perot cavity of a frequency doubled Nd:YAG laser used as the optical phase modulator,” Rev. Sci. Instrum. 73, 4142–4 (2002).
[Crossref]

Russell, P. St J.

R. Holzwarth, Th. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. St J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85, 2264 (2000)
[Crossref] [PubMed]

Salomon, Ch.

Santarelli, G.

C. Daussy, O. Lopez, A. Amy-Klien, A Goncharov, M. Guinet, C. Chardonet, F. Narbonneau, M. Lours, D. Chambon, S. Bize, A. Clairon, G. Santarelli, M.E. Tobar, and A.N. Luiten, “Long distance frequency diseemination with a resolution of 10-17,” Phys. Rev. Lett. 94, 203904 (2005).
[Crossref] [PubMed]

Schnatz, H.

H. Schnatz, B. Lipphardt, C. Degenhardt, E Peik, T. Schneider, U. Sterr, and C. Tamm, “Optical frequency measurements using fs-comb generators,” IEEE Trans. Instrum. Meas. 54, 750–753 (2005).
[Crossref]

J. Helmcke, G. Wilpers, T. Binnewies, C. Degenhardt, U. Sterr, H. Schnatz, and F. Riehle, “Optical frequency standard based on cold Ca atoms,” IEEE Trans. Instrum. Meas. 52, 250–4 (2003).
[Crossref]

Schneider, T.

H. Schnatz, B. Lipphardt, C. Degenhardt, E Peik, T. Schneider, U. Sterr, and C. Tamm, “Optical frequency measurements using fs-comb generators,” IEEE Trans. Instrum. Meas. 54, 750–753 (2005).
[Crossref]

Skenderovi, H.

D. Aumiler, T. Ban, H. Skenderovi, and G. Pichler Velocity selective optical pumping of Rb hyperfine lines induced by a train of femtosecond pulses Phys. Rev. Lett.95, 233001 (2005).
[Crossref] [PubMed]

Smith, W. L.

J. A. Barnes, A. R. Chi, L. S. Cutler, D. J. Healey, D. B. Leeson, T. E. McGunigal, J. A. Mullen, W. L. Smith, R. L. Sydnor, R. F. C. Vessot, and G. M. R. Winkler, “Characterization of frequency stability,” IEEE Trans. Instrum. Meas. 20, 105–120 (1971).
[Crossref]

Sterr, U.

H. Schnatz, B. Lipphardt, C. Degenhardt, E Peik, T. Schneider, U. Sterr, and C. Tamm, “Optical frequency measurements using fs-comb generators,” IEEE Trans. Instrum. Meas. 54, 750–753 (2005).
[Crossref]

J. Helmcke, G. Wilpers, T. Binnewies, C. Degenhardt, U. Sterr, H. Schnatz, and F. Riehle, “Optical frequency standard based on cold Ca atoms,” IEEE Trans. Instrum. Meas. 52, 250–4 (2003).
[Crossref]

Stowe, M. C.

A. Marian, M. C. Stowe, D. Felinto, and J. Ye, “Direct frequency comb measurements of absolute optical frequencies and population transfer dynamics,” Phys. Rev. Lett. 95, 023001 (2005).
[Crossref] [PubMed]

A. Marian, M. C. Stowe, J.R. Lawall, D. Felinto, and J. Ye, “United time-frequency spectroscopy for dynamics and global structure,” Science 306, 2063 (2004).
[Crossref] [PubMed]

Sydnor, R. L.

J. A. Barnes, A. R. Chi, L. S. Cutler, D. J. Healey, D. B. Leeson, T. E. McGunigal, J. A. Mullen, W. L. Smith, R. L. Sydnor, R. F. C. Vessot, and G. M. R. Winkler, “Characterization of frequency stability,” IEEE Trans. Instrum. Meas. 20, 105–120 (1971).
[Crossref]

Tamm, C.

H. Schnatz, B. Lipphardt, C. Degenhardt, E Peik, T. Schneider, U. Sterr, and C. Tamm, “Optical frequency measurements using fs-comb generators,” IEEE Trans. Instrum. Meas. 54, 750–753 (2005).
[Crossref]

Tanner, C. E.

V. Gerginov, C. E. Tanner, S. A. Diddams, A. Bartels, and L. Hollberg, “High-resolution spectroscopy with a femtosecond laser frequency comb,” Opt. Lett. 30, 1734–1736 (2005).
[Crossref] [PubMed]

V. Gerginov, K Calkins, C. E. Tanner, S. Diddams, A. Bartels, and L. Hollberg, “Optical frequency measurements of 6s 2S1/2 -6p 2P3/2 transition in a 133Cs atomic beam using a femtosecond laser frequency comb,” Phys. Rev. A 70, 042505 (2004).
[Crossref]

Tanner, C.E.

V. Gerginov, K. Calkins, C.E. Tanner, J.J. McFerran, S. Diddams, A. Bartels, and L. Hollberg, “Optical frequency measurements of 6s 2S1/2 -6p 2P1/2 (D1) transitions in 133Cs and their impact on the fine-structure constant,” Phys. Rev. A 73, 035601 (2006).
[Crossref]

Tobar, M.E.

C. Daussy, O. Lopez, A. Amy-Klien, A Goncharov, M. Guinet, C. Chardonet, F. Narbonneau, M. Lours, D. Chambon, S. Bize, A. Clairon, G. Santarelli, M.E. Tobar, and A.N. Luiten, “Long distance frequency diseemination with a resolution of 10-17,” Phys. Rev. Lett. 94, 203904 (2005).
[Crossref] [PubMed]

Udem, Th.

L. Hollberg, C.W. Oates, E. A. Curtis, E. N. Ivanov, S. A. Diddams, Th. Udem, H. G. Robinson, J. C. Bergquist, R. J. Rafac, W. M. Itano, R. E. Drullinger, and D. J. Wineland, “Optical frequency standards and measurements,” IEEE J. Quantum Electron. 37, 1502–1513 (2001)
[Crossref]

Th. Udem, S. A. Diddams, K. R. Vogel, C.W. Oates, E. A. Curtis, W. D. Lee, W. M. Itano, R. E. Drullinger, J. C. Berquist, and L. Hollberg, “Absolute frequency measurements of the Hg+ and Ca optical clock transitions with a femtosecond laser,” Phys. Rev. Lett. 86, 4996–9 (2001).
[Crossref] [PubMed]

R. Holzwarth, Th. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. St J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85, 2264 (2000)
[Crossref] [PubMed]

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzworth, Th. Udem, and T.W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102 (2000)
[Crossref] [PubMed]

Th. Udem, J. Reichert, R. Holzwarth, and T.W. Hänsch, “Absolute optical frequency measurement of the Cesium D1 line with a mode-locked laser,” Phys. Rev. Lett. 82, 3568–71 (1999)
[Crossref]

Vessot, R. F. C.

J. A. Barnes, A. R. Chi, L. S. Cutler, D. J. Healey, D. B. Leeson, T. E. McGunigal, J. A. Mullen, W. L. Smith, R. L. Sydnor, R. F. C. Vessot, and G. M. R. Winkler, “Characterization of frequency stability,” IEEE Trans. Instrum. Meas. 20, 105–120 (1971).
[Crossref]

Vogel, K. R.

Th. Udem, S. A. Diddams, K. R. Vogel, C.W. Oates, E. A. Curtis, W. D. Lee, W. M. Itano, R. E. Drullinger, J. C. Berquist, and L. Hollberg, “Absolute frequency measurements of the Hg+ and Ca optical clock transitions with a femtosecond laser,” Phys. Rev. Lett. 86, 4996–9 (2001).
[Crossref] [PubMed]

Wadsworth, W. J.

R. Holzwarth, Th. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. St J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85, 2264 (2000)
[Crossref] [PubMed]

Wilpers, G.

J.J. McFerran, E.N. Ivanov, A. Bartels, G. Wilpers, C.W. Oates, S.A. Diddams, and L. Hollberg, “Low-noise synthesis of microwave signals from an optical source,” Electron. Lett. 41, 650–1 (2005).
[Crossref]

A. Bartels, S.A. Diddams, C.W. Oates, G. Wilpers, J.C. Bergquist, W.H. Oskay, and L. Hollberg, “Femtosecond-laser-based synthesis of ultrastable microwave signals from optical frequency references,” Opt. Lett. 30, 667–9 (2005).
[Crossref] [PubMed]

J. Helmcke, G. Wilpers, T. Binnewies, C. Degenhardt, U. Sterr, H. Schnatz, and F. Riehle, “Optical frequency standard based on cold Ca atoms,” IEEE Trans. Instrum. Meas. 52, 250–4 (2003).
[Crossref]

Windeler, R. S.

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzworth, Th. Udem, and T.W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102 (2000)
[Crossref] [PubMed]

Wineland, D. J.

L. Hollberg, C.W. Oates, E. A. Curtis, E. N. Ivanov, S. A. Diddams, Th. Udem, H. G. Robinson, J. C. Bergquist, R. J. Rafac, W. M. Itano, R. E. Drullinger, and D. J. Wineland, “Optical frequency standards and measurements,” IEEE J. Quantum Electron. 37, 1502–1513 (2001)
[Crossref]

Winkler, G. M. R.

J. A. Barnes, A. R. Chi, L. S. Cutler, D. J. Healey, D. B. Leeson, T. E. McGunigal, J. A. Mullen, W. L. Smith, R. L. Sydnor, R. F. C. Vessot, and G. M. R. Winkler, “Characterization of frequency stability,” IEEE Trans. Instrum. Meas. 20, 105–120 (1971).
[Crossref]

Ye, J.

A. Marian, M. C. Stowe, D. Felinto, and J. Ye, “Direct frequency comb measurements of absolute optical frequencies and population transfer dynamics,” Phys. Rev. Lett. 95, 023001 (2005).
[Crossref] [PubMed]

A. Marian, M. C. Stowe, J.R. Lawall, D. Felinto, and J. Ye, “United time-frequency spectroscopy for dynamics and global structure,” Science 306, 2063 (2004).
[Crossref] [PubMed]

J. D. Jost, J. L. Hall, and J. Ye, “Continuously tunable, precise, single frequency optical signal generator,” Opt. Express 10, 515 (2002), http://www.opticsinfobase.org/abstract.cfm?URI=oe-10-12-515.
[PubMed]

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzworth, Th. Udem, and T.W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102 (2000)
[Crossref] [PubMed]

Young, B. C.

B. C. Young, F. C. Cruz, W. M. Itano, and J. C. Bergquist, “Visible lasers with subhertz linewidths,” Phys. Rev. Lett. 82, 3799–3802 (1999).
[Crossref]

Zavattini, G

M. Bregant, G. Cantatore, F Della Valle, G Ruoso, and G Zavattini, “Frequency locking to a high-finesse Fabry-Perot cavity of a frequency doubled Nd:YAG laser used as the optical phase modulator,” Rev. Sci. Instrum. 73, 4142–4 (2002).
[Crossref]

App. Phys. B (1)

J. J. McFerran, M. Maric, and A. N. Luiten, “Efficient detection and control of the offset frequency in a self-referencing optical frequency synthesizer,” App. Phys. B 79, 39–44, (2004).
[Crossref]

Electron. Lett. (2)

S. Chang, A. G. Mann, and A. N. Luiten, “Improved cryogenic sapphire oscillator with exceptionally high frequency stability,” Electron. Lett. 36, 480–481 (2000).
[Crossref]

J.J. McFerran, E.N. Ivanov, A. Bartels, G. Wilpers, C.W. Oates, S.A. Diddams, and L. Hollberg, “Low-noise synthesis of microwave signals from an optical source,” Electron. Lett. 41, 650–1 (2005).
[Crossref]

IEEE J. Quantum Electron. (1)

L. Hollberg, C.W. Oates, E. A. Curtis, E. N. Ivanov, S. A. Diddams, Th. Udem, H. G. Robinson, J. C. Bergquist, R. J. Rafac, W. M. Itano, R. E. Drullinger, and D. J. Wineland, “Optical frequency standards and measurements,” IEEE J. Quantum Electron. 37, 1502–1513 (2001)
[Crossref]

IEEE J. Sel. Top. in Quantum Electron. (1)

E. N. Ivanov, S. A. Diddams, and L. Hollberg, “Analysis of noise mechansims limiting the frequency stability of microwave signals generated with a femtosecond laser,” IEEE J. Sel. Top. in Quantum Electron. 9, 1059–1065 (2003).
[Crossref]

IEEE Trans. Instrum. Meas. (4)

H. Schnatz, B. Lipphardt, C. Degenhardt, E Peik, T. Schneider, U. Sterr, and C. Tamm, “Optical frequency measurements using fs-comb generators,” IEEE Trans. Instrum. Meas. 54, 750–753 (2005).
[Crossref]

J. Helmcke, G. Wilpers, T. Binnewies, C. Degenhardt, U. Sterr, H. Schnatz, and F. Riehle, “Optical frequency standard based on cold Ca atoms,” IEEE Trans. Instrum. Meas. 52, 250–4 (2003).
[Crossref]

A. N. Luiten, A. G. Mann, M. Costa, and D. G. Blair, “Power Stabilized Exceptionally High Stability Cryogenic Sapphire Resonator Oscillator,” IEEE Trans. Instrum. Meas. 44, 132–135 (1995).
[Crossref]

J. A. Barnes, A. R. Chi, L. S. Cutler, D. J. Healey, D. B. Leeson, T. E. McGunigal, J. A. Mullen, W. L. Smith, R. L. Sydnor, R. F. C. Vessot, and G. M. R. Winkler, “Characterization of frequency stability,” IEEE Trans. Instrum. Meas. 20, 105–120 (1971).
[Crossref]

J. Opt. Soc. Am. B (1)

Opt. Express (1)

Opt. Lett. (4)

Phys. Rev. A (2)

V. Gerginov, K. Calkins, C.E. Tanner, J.J. McFerran, S. Diddams, A. Bartels, and L. Hollberg, “Optical frequency measurements of 6s 2S1/2 -6p 2P1/2 (D1) transitions in 133Cs and their impact on the fine-structure constant,” Phys. Rev. A 73, 035601 (2006).
[Crossref]

V. Gerginov, K Calkins, C. E. Tanner, S. Diddams, A. Bartels, and L. Hollberg, “Optical frequency measurements of 6s 2S1/2 -6p 2P3/2 transition in a 133Cs atomic beam using a femtosecond laser frequency comb,” Phys. Rev. A 70, 042505 (2004).
[Crossref]

Phys. Rev. Lett. (8)

C.W. Hoyt, Z.W. Barber, C.W. Oates, T.M. Fortier, S.A. Diddams, and L. Hollberg, “Observation and absolute frequency measurements of the 1S0 -3 P0 optical clock transition in neutral ytterbium,” Phys. Rev. Lett. 95, 083003 (2005).
[Crossref] [PubMed]

Th. Udem, S. A. Diddams, K. R. Vogel, C.W. Oates, E. A. Curtis, W. D. Lee, W. M. Itano, R. E. Drullinger, J. C. Berquist, and L. Hollberg, “Absolute frequency measurements of the Hg+ and Ca optical clock transitions with a femtosecond laser,” Phys. Rev. Lett. 86, 4996–9 (2001).
[Crossref] [PubMed]

Th. Udem, J. Reichert, R. Holzwarth, and T.W. Hänsch, “Absolute optical frequency measurement of the Cesium D1 line with a mode-locked laser,” Phys. Rev. Lett. 82, 3568–71 (1999)
[Crossref]

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzworth, Th. Udem, and T.W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102 (2000)
[Crossref] [PubMed]

R. Holzwarth, Th. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. St J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85, 2264 (2000)
[Crossref] [PubMed]

C. Daussy, O. Lopez, A. Amy-Klien, A Goncharov, M. Guinet, C. Chardonet, F. Narbonneau, M. Lours, D. Chambon, S. Bize, A. Clairon, G. Santarelli, M.E. Tobar, and A.N. Luiten, “Long distance frequency diseemination with a resolution of 10-17,” Phys. Rev. Lett. 94, 203904 (2005).
[Crossref] [PubMed]

B. C. Young, F. C. Cruz, W. M. Itano, and J. C. Bergquist, “Visible lasers with subhertz linewidths,” Phys. Rev. Lett. 82, 3799–3802 (1999).
[Crossref]

A. Marian, M. C. Stowe, D. Felinto, and J. Ye, “Direct frequency comb measurements of absolute optical frequencies and population transfer dynamics,” Phys. Rev. Lett. 95, 023001 (2005).
[Crossref] [PubMed]

Physica B (1)

A. J. Giles, A. G. Mann, S. K. Jones, D. G. Blair, and M. J. Buckingham, “A very high stability sapphire loaded superconducting cavity oscillator,” Physica B 165, 145–146 (1990).
[Crossref]

Rev. Sci. Instrum. (1)

M. Bregant, G. Cantatore, F Della Valle, G Ruoso, and G Zavattini, “Frequency locking to a high-finesse Fabry-Perot cavity of a frequency doubled Nd:YAG laser used as the optical phase modulator,” Rev. Sci. Instrum. 73, 4142–4 (2002).
[Crossref]

Science (1)

A. Marian, M. C. Stowe, J.R. Lawall, D. Felinto, and J. Ye, “United time-frequency spectroscopy for dynamics and global structure,” Science 306, 2063 (2004).
[Crossref] [PubMed]

Other (2)

D. Aumiler, T. Ban, H. Skenderovi, and G. Pichler Velocity selective optical pumping of Rb hyperfine lines induced by a train of femtosecond pulses Phys. Rev. Lett.95, 233001 (2005).
[Crossref] [PubMed]

A.G. MannA.N. Luiten, “Ultrastable cryogenic microwave oscillators” in Frequency Measurement and Control: Advanced Techniques and Future Trends,ed. (Springer, Berlin, 2001), pp.37–64

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Frequency instability comparison between an optical and microwave oscillator. The repetition frequency, fR , of a mode-locked laser is controlled by a highly stable microwave sapphire oscillator (MSO). A Nd:YAG laser is locked to a high finesse optical cavity and a portion of its signal is combined with light from a MSF-broadened comb to produce a beat signal that is frequency counted. The offset frequency of the mode-locked laser is also stabilized. PD, photodetector.

Fig. 2.
Fig. 2.

Control of the repetition frequency of the mode-locked laser by phase locking to a microwave sapphire oscillator. LF, loop filter; LPF, low pass filter.

Fig. 3.
Fig. 3.

Schematic of the oscillators involved in the frequency counting measurements. The mixer and photodetector colours correspond to the trace colours of Figs. 4 and 5. The dotted line is used to indicate that the optical mixing between the cw lasers and comb occur in separate experiments. C, counter.

Fig. 4.
Fig. 4.

Square-root Allan variance (SRAV) measurements. Green: optical beat between a cavity stabilized Nd:YAG laser (OOSC1) and an octave spanning comb whose repetition frequency is controlled by a cryogenic microwave sapphire oscillator (typical measurement). Red: beat between two MSOs. Grey: beat between two optical oscillators. Green dashed: best measurement of the microwave-to-optical frequency comparison. Blue: closed loop phase noise of fR ,10GHz converted to a SRAV. Lines between data points are a guide to the eye only.

Fig. 5.
Fig. 5.

Square-root Allan variance measurements. Green: optical beat between the second harmonic of a cavity stabilized Nd:YAG laser (OOSC2) and the MSO stabilized frequency comb. Red: beat between two MSOs. Grey: beat between two optical oscillators. Blue: closed loop phase noise of fR ,10GHz converted to square root Allan variance.

Fig. 6.
Fig. 6.

Time traces of three beat signal frequencies recorded simultaneously: (a) between the frequency comb and OOSC2, (b) between two optical oscillators, (c) between two microwave oscillators. The frequency variations for traces (b) and (c) have been scaled to 564 THz. The traces of the residual frequency variations have been suitably offset for reasons of clarity. The gate time is 0.5 s.

Fig. 7.
Fig. 7.

Single-sideband measures of phase noise of the 10th harmonic of the repetition rate and of the microwave sapphire oscillator (two MSOs): (a), fR ,10GHz open loop ; (b), fR ,10GHz in-loop; (c), MSO.

Fig. 8.
Fig. 8.

Points of measurement for in-loop, ℒϕIL, and out-of-loop, ℒϕOL, phase spectral densities.

Fig. 9.
Fig. 9.

Phase noise measurement of the 10th harmonic of the repetition rate: (a), in-loop; (b), out-of-loop; (c), measurement noise floor for the out-of-loop phase-spectral density.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

σ y ( τ ) = 2 π f c τ 0 ϕ ( f ) sin 4 ( π f τ ) d f

Metrics