Abstract

We have modeled the semiconductor-optical-amplifier (SOA) -based polarization-discriminating-symmetric-Mach-Zehnder (PDSMZ) -type (i.e., a UNI-type) 3R gating scheme, and have searched for an optimum set of 3R-gating conditions. Primary parts of the optimum parameters we obtained ‒ such as the interferometer delay time Δt and the widths of input data and clock pulses in the gate model ‒ matched those from previously reported 3R-loop transmission experiments fairly well. We also found that the 3R-gating mechanism which forms the regenerated output signal differs greatly from what it has been thought to be. Based on this model, we have characterized the available degree of random-amplitude-noise suppression.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. A. E. Kelly, I. D. Phillips, R. J. Manning, A. D. Ellis, D. Nesset, D. G. Moodie, and R. Kashyap, "80 Gb/s all-optical regenerative wavelength conversion using semiconductor optical amplifier based interferometer," Electron. Lett. 35, 1477-1478 (1999).
    [CrossRef]
  2. Y. Ueno, S. Nakamura, and K. Tajima, "Penalty-free error-free all-optical data pulse regeneration at 84 Gb/s by using a Symmetric-Mach-Zehnder-type semiconductor regenerator," IEEE Photonics Technol. Lett. 13, 469-471 (2001).
    [CrossRef]
  3. Y. Ueno, S. Nakamura, and K. Tajima, "Ultrahigh-speed data regeneration and wavelength conversion for OTDM systems (invited)," 27th European Conference on Optical Communication (ECOC 2001), Sept. 30 - Oct. 4, 2001, Amsterdam, Netherlands, paper Th.F.2.1.
  4. K. Tajima, S. Nakamura, and Y. Sugimoto, "Ultrafast polarization-discriminating Mach-Zehnder all-optical switch," Appl. Phys. Lett. 67, 3709-3711 (1995).
    [CrossRef]
  5. N. S. Patel, K. L. Hall, and K. A. Rauschenbach, "40-Gbit/s cascadable all-optical logic with an ultrafast nonlinear interferometer," Opt. Lett. 21, 1466-1468 (1996).
    [CrossRef] [PubMed]
  6. Y. Hashimoto, R. Kuribayashi, S. Nakamura, K. Tajima, and I. Ogura, "Transmission at 40 Gb/s with a semiconductor-based optical 3R regenerator," 29th European Conference on Optical Communication (ECOC 2003), Sept. 2003, paper Mo 4.3.3.
  7. R. Inohara, M. Tsurusawa, K. Nishimura, and M. Usami, "Experimental verification for cascadability of all-optical 3R regenerator using two-stage SOA-based polarization discriminated switches with estimated Q-factor over 20 dB at 40 Gbit/s transmission," 29th European Conference on Optical Communication (ECOC 2003), Sept. 2003, paper Mo 4.3.2.
  8. L. Billes, J. C. Simon, B. Kowalski, M. Henry, G. Michaud, P. Lamouler, and F. Alard, "20 Gbit/s optical 3R regenerator using SOA based Mach-Zehnder interferometer gate," in Dig. 23rd Eur. Conf. Optical Communications (ECOC '97), Edinburgh, U.K., Vol. 2, Sept. 22-25, 1997, pp. 269-272.
  9. S. Nakamura, T. Tamanuki, M. Takahashi, Y. Ueno, and K. Tajima, "Ultrafast optical signal processing with symmetric-Mach-Zehnder-type all-optical switches," Photonics West, San Jose, USA, 2003, SPIE number 4998-03.
  10. Y. Ueno, "Theoretically predicted performance and frequency-scaling rule of a Symmetric-Mach-Zehnder optical 3R gating," Opt. Commun. 229, 253-261 (2004).
    [CrossRef]
  11. K. Tajima, S. Nakamura, Y. Ueno, J. Sasaki, T. Sugimoto, T. Kato, T. Shimoda, M. Itoh, H. Hatakeyama, T. Tamanuki, and T. Sasaki, "Hybrid integrated symmetric Mach-Zehnder all-optical switch and its ultrafast, high extinction switching," Electron. Lett. 35, 2030-2031 (1999).
    [CrossRef]
  12. V. Lal, M. L. Masanovic, J. A. Summers, L. A. Coldren, and D. Blumenthal, "40 Gbps operation of an offset quantum well active region based widely-tunable all-optical wavelength converter," Optical Fiber Communication Conference (OFC 2005), Anaheim, USA, March 6-11, 2005, OThE3.
  13. J. Sarathy, "Design and applications of all-optical regenerators," Optical Fiber Communication Conference (OFC 2005), Anaheim, USA, March 6-11, 2005, OThE1.
    [CrossRef]
  14. R. J. Manning, and D.A.O. Davies, "Three-wavelength device for all-optical signal processing," Opt. Lett. 19, 889-891 (1994).
    [CrossRef] [PubMed]
  15. J. Sakaguchi, M. L. Nielsen, T. Ohira, R. Suzuki, and Y. Ueno, "Observation of small sub-pulses out of the delayed-interference signal-wavelength converter," Jpn. J. Appl. Phys. 44, L1358-L1360 (2005).
    [CrossRef]
  16. Y. Ueno, S. Nakamura, and K. Tajima, "Nonlinear phase shifts induced by semiconductor optical amplifiers with control pulses at repetition frequencies in the 40-160 GHz range for use in ultrahigh-speed all-optical signal processing," J. Opt. Soc. Am. B 19, 2573-2589 (2002).
    [CrossRef]
  17. Y. Ueno, M. Takahashi, S. Nakamura, K. Suzuki, T. Shimizu, A. Furukawa, T. Tamanuki, K. Mori, S. Ae, T. Sasaki, and K. Tajima, "Control scheme for optimizing the interferometer phase bias in Symmetric-Mach-Zehnder-type all-optical switch," IEEE Photonics Technol. Lett. 14, 1692-1694 (2002).
    [CrossRef]

Appl. Phys. Lett. (1)

K. Tajima, S. Nakamura, and Y. Sugimoto, "Ultrafast polarization-discriminating Mach-Zehnder all-optical switch," Appl. Phys. Lett. 67, 3709-3711 (1995).
[CrossRef]

ECOC 1997 (1)

L. Billes, J. C. Simon, B. Kowalski, M. Henry, G. Michaud, P. Lamouler, and F. Alard, "20 Gbit/s optical 3R regenerator using SOA based Mach-Zehnder interferometer gate," in Dig. 23rd Eur. Conf. Optical Communications (ECOC '97), Edinburgh, U.K., Vol. 2, Sept. 22-25, 1997, pp. 269-272.

ECOC 2001 (1)

Y. Ueno, S. Nakamura, and K. Tajima, "Ultrahigh-speed data regeneration and wavelength conversion for OTDM systems (invited)," 27th European Conference on Optical Communication (ECOC 2001), Sept. 30 - Oct. 4, 2001, Amsterdam, Netherlands, paper Th.F.2.1.

ECOC 2003 (2)

Y. Hashimoto, R. Kuribayashi, S. Nakamura, K. Tajima, and I. Ogura, "Transmission at 40 Gb/s with a semiconductor-based optical 3R regenerator," 29th European Conference on Optical Communication (ECOC 2003), Sept. 2003, paper Mo 4.3.3.

R. Inohara, M. Tsurusawa, K. Nishimura, and M. Usami, "Experimental verification for cascadability of all-optical 3R regenerator using two-stage SOA-based polarization discriminated switches with estimated Q-factor over 20 dB at 40 Gbit/s transmission," 29th European Conference on Optical Communication (ECOC 2003), Sept. 2003, paper Mo 4.3.2.

Electron. Lett. (2)

A. E. Kelly, I. D. Phillips, R. J. Manning, A. D. Ellis, D. Nesset, D. G. Moodie, and R. Kashyap, "80 Gb/s all-optical regenerative wavelength conversion using semiconductor optical amplifier based interferometer," Electron. Lett. 35, 1477-1478 (1999).
[CrossRef]

K. Tajima, S. Nakamura, Y. Ueno, J. Sasaki, T. Sugimoto, T. Kato, T. Shimoda, M. Itoh, H. Hatakeyama, T. Tamanuki, and T. Sasaki, "Hybrid integrated symmetric Mach-Zehnder all-optical switch and its ultrafast, high extinction switching," Electron. Lett. 35, 2030-2031 (1999).
[CrossRef]

IEEE Photonics Technol. Lett. (2)

Y. Ueno, S. Nakamura, and K. Tajima, "Penalty-free error-free all-optical data pulse regeneration at 84 Gb/s by using a Symmetric-Mach-Zehnder-type semiconductor regenerator," IEEE Photonics Technol. Lett. 13, 469-471 (2001).
[CrossRef]

Y. Ueno, M. Takahashi, S. Nakamura, K. Suzuki, T. Shimizu, A. Furukawa, T. Tamanuki, K. Mori, S. Ae, T. Sasaki, and K. Tajima, "Control scheme for optimizing the interferometer phase bias in Symmetric-Mach-Zehnder-type all-optical switch," IEEE Photonics Technol. Lett. 14, 1692-1694 (2002).
[CrossRef]

J. Opt. Soc. Am. B (1)

Jpn. J. Appl. Phys. (1)

J. Sakaguchi, M. L. Nielsen, T. Ohira, R. Suzuki, and Y. Ueno, "Observation of small sub-pulses out of the delayed-interference signal-wavelength converter," Jpn. J. Appl. Phys. 44, L1358-L1360 (2005).
[CrossRef]

OFC 2005 (2)

V. Lal, M. L. Masanovic, J. A. Summers, L. A. Coldren, and D. Blumenthal, "40 Gbps operation of an offset quantum well active region based widely-tunable all-optical wavelength converter," Optical Fiber Communication Conference (OFC 2005), Anaheim, USA, March 6-11, 2005, OThE3.

J. Sarathy, "Design and applications of all-optical regenerators," Optical Fiber Communication Conference (OFC 2005), Anaheim, USA, March 6-11, 2005, OThE1.
[CrossRef]

Opt. Commun. (1)

Y. Ueno, "Theoretically predicted performance and frequency-scaling rule of a Symmetric-Mach-Zehnder optical 3R gating," Opt. Commun. 229, 253-261 (2004).
[CrossRef]

Opt. Lett. (2)

Photonics West 2003 (1)

S. Nakamura, T. Tamanuki, M. Takahashi, Y. Ueno, and K. Tajima, "Ultrafast optical signal processing with symmetric-Mach-Zehnder-type all-optical switches," Photonics West, San Jose, USA, 2003, SPIE number 4998-03.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

The two alternative optical-3R gates. (a) PDSMZ-3R gate [1–3], (b) SMZ-3R gate [8, 9]

Fig. 2.
Fig. 2.

The optical-3R gate scheme with two-cascaded PDSMZ-3R gates [6, 7]. SOA: semiconductor optical amplifier, BPF1, BPF2: optical band-pass filters, pol: polarizer.

Fig. 3.
Fig. 3.

Conventional PDSMZ-3R gate model.

Fig. 4.
Fig. 4.

Calculated 42-Gb/s pseudorandom signals before and after the 3R gating. (a), (b): Input signal, (c), (d): Intermediate signal after the first PDSMZ gate, (e), (f): Output signal, (a), (c), (e): Eye diagrams, (b), (d), (f): Bit-error rates (BER), Dashed curves in (d) and (f): BER of the input signal in (b), for comparison.

Fig. 5
Fig. 5

Transition of 42-Gb/s eye diagrams from the first input to the final output of the two-cascaded PDSMZ-3R gates.

Fig. 6.
Fig. 6.

Physical mechanism that regenerates the 42-Gb/s patterned data pulses.(a) Carrier-density oscillation (solid), induced by both ‘011’ input data (6.0 ps) and clock pulses, (b) Effective gate-window’s transmittance Tw (t) (dashed), with respect to the delayed clock pulses (3.0 ps, solid), (c) Logic-inverted ‘100’ output data pulses (before being bandpass-filtered), (d) Trace of the difference between the optical phases of the two-split clock-pulse components

Fig. 7.
Fig. 7.

Dependence on the magnitude of the nonlinear phase shift, ΔΦNL solid curve: Q2 of the output signal after the two-cascaded PDSMZ gates, dashed curve: Q2 of the intermediate signal between the two-cascaded 3R gates, dashed line: Q2 of the input signal.

Fig. 8.
Fig. 8.

Possible output-waveform distortions. Upper: output waveforms, lower: gating windows (dashed) with respect to the input clocks (solid), (a) Asynchronous clock leakage, when the clock pulse’s width is too broad, (b) Synchronous clock leakage, when the clock power is too weak, (c) Little distortion, when the conditions of the input clock are acceptable.

Fig. 9.
Fig. 9.

Dependence of the decision-threshold limits on the width of the input signal. The decision-threshold limit in this work is defined as a limit of the decision-threshold level where the bit-error rate reaches 10-6.

Fig. 10.
Fig. 10.

Dependence on the signal’s input timing.

Tables (4)

Tables Icon

Table 1. Parameter values for the PDSMZ-gates.

Tables Icon

Table 2. Parameter values for the optical inputs.

Tables Icon

Table 3. Comparisons between the relative delay times, Δt/T.

Tables Icon

Table 4. Calculated parameter values of the 3R-regenerated data signal.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

d dt n c ( t ) ¯ = I op qV n c ( t ) ¯ τ c 1 V · ( G { n c ( t ) ¯ } 1 ) · 1 2 | E clock ( t ) | 2 + 1 2 E clock ( t Δ t ) 2 + E data ( t ) 2 ℏω .
G ( t ) exp [ dg d n c · n c ( t ) ¯ · Γ L ] ,
Φ ( t ) = k 0 · d n r d n c · n c ( t ) ¯ · ΓL ,
E data ( t ) = m [ C m · E m 1 + ( 1 C m ) · E m 0 ] · sech ( t m × T t tim T w data ) , m = 1,2 , , ,
E clock ( t ) = m E clock · sech ( t m × T T w clock ) , m = 1,2 , , .
E clock 1 SOA ( t ) = G { n c ( t ) ¯ } × exp [ i Φ { n c ( t ) ¯ } ] × E clock ( t ) ,
E clock 2 SOA ( t ) = G { n c ( t ) ¯ } × exp [ i Φ { n c ( t ) ¯ } ] × E clock ( t Δ t ) .
E data output ( t ) = E clock 1 SOA ( t Δ t ) + exp ( i Δ Φ b ) · E clock 2 SOA ( t )
= G { n c ¯ ( t Δ t ) ¯ } × exp [ i Φ { n c ( t Δ t ) ¯ } ] × E clock ( t Δ t )
+ G { n c ( t ) ¯ } × exp [ i Φ { n c ( t ) ¯ } + i Δ Φ b ] × E clock ( t Δ t )
= T w ( t ) × E clock ( t Δ t )
T w ( t ) G { n c ( t ) ¯ } × exp [ i Φ { n c ( t ) ¯ } + i Δ Φ b ] + G { n c ( t Δ t ) ¯ } × exp [ i Φ { n c ( t Δ t ) ¯ } ] .
T w ( t ) 2 exp [ i Φ { n c ( t ) ¯ } + i Δ Φ b ] + exp [ i Φ { n c ( t Δ t ) ¯ } ] 2
= cos 2 ( ΔΦ ( t ) + Δ Φ b ) 2 .
ΔΦ ( t ) Φ { n c ( t ) ¯ } Φ { n c ( t Δ t ) ¯ } .

Metrics