Abstract

In this work, the numerical and experimental investigation of the cladding modes re-organization in high refractive index (HRI) coated Long Period Gratings (LPGs) is reported. Moreover, the effects of the cladding modes re-organization on the sensitivity to the surrounding medium refractive index (SRI) have been outlined. When azimuthally symmetric nano-scale HRI coatings are deposited along LPGs devices, a significant modification of the cladding modes distribution occurs, depending on the layer features (refractive index and thickness) and on the SRI. In particular, if layer parameters are properly chosen, the transition of the lowest order cladding mode into an overlay mode occurs. As a consequence, a cladding modes re-organization can be observed leading to relevant improvements in the SRI sensitivity in terms of wavelength shift and amplitude variations of the LPGs attenuation bands.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. S. W. James and R. P. Tatam, "Optical fibre long-period grating sensors: characteristics and applications," Meas. Sci. Technol. 14, R49-R61 (2003).
    [CrossRef]
  2. A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, "Long-period fiber gratings as band rejection filters," J. Lightwave Technol. 14, 58-65 (1996).
    [CrossRef]
  3. J. R. Qiang and H. E. Chen, "Gain flattening fibre filters using phase shifted long period fibre grating," Electron. Lett. 34, 1132-1133 (1998).
    [CrossRef]
  4. K. W. Chung, and S. Yin, "Analysis of widely tunable long-period grating by use of an ultrathin cladding layer and higher-order cladding mode coupling," Opt. Lett. 29, 812-814 (2004).
    [CrossRef] [PubMed]
  5. X. Shu, T. Allsop, B. Gwandu, L. Zhang and I. Bennion, "Room-temperature operation of widely tunable loss filter," Electron. Lett. 37, 216-218 (2001).
    [CrossRef]
  6. B. J. Eggleton, R. E. Slusher, J. B. Judkins, J. B. Stark, and A. M. Vengsarkar, "All-optical switching in long period fiber gratings," Opt. Lett. 22, 883-885 (1997).
    [CrossRef] [PubMed]
  7. V. Bhatia, "Applications of long-period gratings to single and multi-parameter sensing," Opt. Express 4, 457- 466 (1999), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-4-11-457">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-4-11-457</a>.
    [CrossRef] [PubMed]
  8. C. Y. Lin, L. A. Wang, and G. W. Chern, "Corrugated long period fiber gratings as Strain, Torsion, and Bending Sensors," J. Lightwave Technol. 19, 1159-1168 (2001).
    [CrossRef]
  9. H. J. Patrick, A. D. Kersey and F. Bucholtz, "Analysis of the response of long period fiber gratings to external index of refraction," J. Lightwave Technol. 16, 1606-1612 (1998).
    [CrossRef]
  10. R. Hou, Z. Ghassemlooy, A. Hassan, C. Lu, K. P. Dowker, "Modelling of long-period fibre grating response to refractive index higher than that of cladding," Meas. Sci. Technol. 12, 1709-1713 (2001).
    [CrossRef]
  11. S. T. Lee, R. D. Kumar, P. S. Kumar, P. Radhakrishnan, C. P. G. Vallabhan, and V. P. N. Nampoori, "Long period gratings in multimode optical fibers: application in chemical sensing," Opt. Commun. 224, 237-241 (2003).
    [CrossRef]
  12. T. Allsop, D. J. Webb and I. Bennion, "A comparison of the sensing characteristics of long period gratings written in three different types of fiber," Optical Fiber Technol. 9, 210-223 (2003).
    [CrossRef]
  13. S. W. James, N. D. Rees, G. J. Ashwell, R. P. Tatam, "Optical fibre long period gratings with Langmuir Blodgett thin film overlays," Opt. Lett. 9, 686-688 (2002).
  14. I. Del Villar, M. Achaerandio, I. R. Matias, and F. J. Arregui, "Deposition of overlays by electrostatic self-assembly in long-period fiber gratings," Opt. Lett. 30, 720-722 (2005).
    [CrossRef] [PubMed]
  15. I. Del Villar, I. R. Matias, F. J. Arregui and P. Lalanne, "Optimization of sensitivity in long period fiber gratings with overlay deposition," Opt. Express 13, 56-69 (2005), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-1-56">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-1-56</a>.
    [CrossRef]
  16. Z. Wang, J. R. Heflin, R. H. Stolen and S. Ramachandran, "Analysis of optical response of long period fiber gratings to nm-thick thin-film coatings," Opt. Express 13, 2808-2813 (2005), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-8-2808">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-8-2808</a>.
    [CrossRef]
  17. P. Pilla, A. Iadicicco, L. Contessa, S. Campopiano, A. Cutolo, M. Giordano and A. Cusano, "Optical Chemo- Sensor based on long period gratings coated with ä form Syndiotactic Polystyrene," IEEE Photon. Technol. Lett. 17, 1713-1715 (2005).
    [CrossRef]
  18. A. Cusano, A. Iadicicco, P. Pilla, L. Contessa, S. Campopiano, A. Cutolo and M. Giordano, " Cladding modes re-organization in high refractive index coated long period gratings: Effects on the refractive index sensitivity," Opt. Lett. 30, (2005).
    [CrossRef] [PubMed]
  19. T. Erdogan, "Fiber grating spectra," J. Lightwave Technol. 15, 1277-1294 (1997).
    [CrossRef]
  20. T. Erdogan, "Cladding mode resonances in short and long period fibre grating filters," J. Opt. Soc. Am. 14, 1760-1773 (1997).
    [CrossRef]
  21. E. Anemogiannis, E. N. Glytsis, and T. K. Gaylord, "Transmission characteristics of long- period fiber gratings having arbitrary azimutal/radial refractive index variation," J. Lightwave Technol. 21, 218-227 (2003).
    [CrossRef]
  22. A. W. Snyder, and J. D. Love, "Optical waveguide theory," (Chapman and Hall, New York, 1983).
  23. X. Shu, L. Zhang, and I. Bennion, "Sensitivity characteristics of long period fiber gratings," J. Lightwave Technol. 20, 255-266 (2002).
    [CrossRef]
  24. D. B. Stegall and T. Erdogan, "Leaky cladding mode propagation in long-period fiber grating devices," IEEE Photon. Technol. Lett. 11, 343-345 (1999).
    [CrossRef]
  25. O. Duhem, J.-F. Henninot, M. Warenghem and M. Douay "Demonstration of long-period grating efficient couplings with an external medium of a refractive index higher than that of silica," Appl. Opt. 37, 7223-7228 (1998).
    [CrossRef]
  26. Y. Koyamada, "Numerical analysis of core-mode to radiation-mode coupling in long-period fiber gratings," IEEE Photon. Technol. Lett. 13, 308-310 (2001).
    [CrossRef]
  27. Y. Koyamada, "Analysis of core-mode to radiation-mode coupling in Fiber Bragg Gratings with Finite Cladding Radius," J. Lightwave Technol. 18, 1220-1225, (2000).
    [CrossRef]
  28. M. Monerie, "Propagation in doubly clad single-mode fibers," IEEE J. Quantum Electron. 18, (1982).
  29. G. Guerra, V. M. Vitagliano, C. De Rosa, V.Petraccone, and P. Corradini, "Polymorphism in melt crystallized syndiotactic polystyrene samples," Macromolecules 23, 1539-44 (1990).
    [CrossRef]
  30. V. Petraccone, F. Auriemma, F. Dal Poggetto, C. De Rosa, G. Guerra, and P. Corradini, "On the structure of the mesomorphic form of syndiotactic polystyrene," Makromolekulare Chemie 194, 1335-1345, (1993).
    [CrossRef]
  31. G.Guerra, C. Manfredi, P. Musto, and S. Tavone, "Guest conformation and diffusion into Amorphous and emptied Clathrate phases of Syndiotactic Polystyrene," Macromolecules 31, 1329-1334 (1998).
    [CrossRef]
  32. G. Mensitieri, V. Venditto, and G. Guerra, "Polymeric sensing films absorbing organic guests into a nanoporous host crystalline phase," Sensors and Actuators, B: Chemical B 92, 255-261 (2003).
    [CrossRef]
  33. M. Giordano, M. Russo, A. Cusano, G. Mensitieri, and G.Guerra "Syndiotactic Polystyrene Thin Film as sensitive layer for an optoelectronic chemical sensing device", Sensors and Actuators B 109, 177-184 (2005).
    [CrossRef]
  34. M. Giordano, M. Russo, A. Cusano, A. Cutolo, G. Mensitieri, and L. Nicolais, "Optical sensor based on ultrathin films of δ-form syndiotactic polystyrene for fast and high resolution detection of chloroform", Appl. Phys. Lett. 85, 5349-5351 (2004).
    [CrossRef]
  35. L. D. Landau, and B. G. Levich, Acta Physiochim, U.R.S.S., 17, 42-54 (1942).

Appl. Opt.

Appl. Phys. Lett.

M. Giordano, M. Russo, A. Cusano, A. Cutolo, G. Mensitieri, and L. Nicolais, "Optical sensor based on ultrathin films of δ-form syndiotactic polystyrene for fast and high resolution detection of chloroform", Appl. Phys. Lett. 85, 5349-5351 (2004).
[CrossRef]

Electron. Lett.

J. R. Qiang and H. E. Chen, "Gain flattening fibre filters using phase shifted long period fibre grating," Electron. Lett. 34, 1132-1133 (1998).
[CrossRef]

X. Shu, T. Allsop, B. Gwandu, L. Zhang and I. Bennion, "Room-temperature operation of widely tunable loss filter," Electron. Lett. 37, 216-218 (2001).
[CrossRef]

IEEE J. Quantum Electron.

M. Monerie, "Propagation in doubly clad single-mode fibers," IEEE J. Quantum Electron. 18, (1982).

IEEE Photon. Technol. Lett.

D. B. Stegall and T. Erdogan, "Leaky cladding mode propagation in long-period fiber grating devices," IEEE Photon. Technol. Lett. 11, 343-345 (1999).
[CrossRef]

Y. Koyamada, "Numerical analysis of core-mode to radiation-mode coupling in long-period fiber gratings," IEEE Photon. Technol. Lett. 13, 308-310 (2001).
[CrossRef]

P. Pilla, A. Iadicicco, L. Contessa, S. Campopiano, A. Cutolo, M. Giordano and A. Cusano, "Optical Chemo- Sensor based on long period gratings coated with ä form Syndiotactic Polystyrene," IEEE Photon. Technol. Lett. 17, 1713-1715 (2005).
[CrossRef]

J. Lightwave Technol.

J. Opt. Soc. Am.

T. Erdogan, "Cladding mode resonances in short and long period fibre grating filters," J. Opt. Soc. Am. 14, 1760-1773 (1997).
[CrossRef]

Macromolecules

G. Guerra, V. M. Vitagliano, C. De Rosa, V.Petraccone, and P. Corradini, "Polymorphism in melt crystallized syndiotactic polystyrene samples," Macromolecules 23, 1539-44 (1990).
[CrossRef]

G.Guerra, C. Manfredi, P. Musto, and S. Tavone, "Guest conformation and diffusion into Amorphous and emptied Clathrate phases of Syndiotactic Polystyrene," Macromolecules 31, 1329-1334 (1998).
[CrossRef]

Makromolekulare Chemie

V. Petraccone, F. Auriemma, F. Dal Poggetto, C. De Rosa, G. Guerra, and P. Corradini, "On the structure of the mesomorphic form of syndiotactic polystyrene," Makromolekulare Chemie 194, 1335-1345, (1993).
[CrossRef]

Meas. Sci. Technol.

R. Hou, Z. Ghassemlooy, A. Hassan, C. Lu, K. P. Dowker, "Modelling of long-period fibre grating response to refractive index higher than that of cladding," Meas. Sci. Technol. 12, 1709-1713 (2001).
[CrossRef]

S. W. James and R. P. Tatam, "Optical fibre long-period grating sensors: characteristics and applications," Meas. Sci. Technol. 14, R49-R61 (2003).
[CrossRef]

Opt. Commun.

S. T. Lee, R. D. Kumar, P. S. Kumar, P. Radhakrishnan, C. P. G. Vallabhan, and V. P. N. Nampoori, "Long period gratings in multimode optical fibers: application in chemical sensing," Opt. Commun. 224, 237-241 (2003).
[CrossRef]

Opt. Express

Opt. Lett.

A. Cusano, A. Iadicicco, P. Pilla, L. Contessa, S. Campopiano, A. Cutolo and M. Giordano, " Cladding modes re-organization in high refractive index coated long period gratings: Effects on the refractive index sensitivity," Opt. Lett. 30, (2005).
[CrossRef] [PubMed]

B. J. Eggleton, R. E. Slusher, J. B. Judkins, J. B. Stark, and A. M. Vengsarkar, "All-optical switching in long period fiber gratings," Opt. Lett. 22, 883-885 (1997).
[CrossRef] [PubMed]

S. W. James, N. D. Rees, G. J. Ashwell, R. P. Tatam, "Optical fibre long period gratings with Langmuir Blodgett thin film overlays," Opt. Lett. 9, 686-688 (2002).

I. Del Villar, M. Achaerandio, I. R. Matias, and F. J. Arregui, "Deposition of overlays by electrostatic self-assembly in long-period fiber gratings," Opt. Lett. 30, 720-722 (2005).
[CrossRef] [PubMed]

K. W. Chung, and S. Yin, "Analysis of widely tunable long-period grating by use of an ultrathin cladding layer and higher-order cladding mode coupling," Opt. Lett. 29, 812-814 (2004).
[CrossRef] [PubMed]

Optical Fiber Technol.

T. Allsop, D. J. Webb and I. Bennion, "A comparison of the sensing characteristics of long period gratings written in three different types of fiber," Optical Fiber Technol. 9, 210-223 (2003).
[CrossRef]

Sensors and Actuators B

M. Giordano, M. Russo, A. Cusano, G. Mensitieri, and G.Guerra "Syndiotactic Polystyrene Thin Film as sensitive layer for an optoelectronic chemical sensing device", Sensors and Actuators B 109, 177-184 (2005).
[CrossRef]

Sensors and Actuators, B: Chemical B

G. Mensitieri, V. Venditto, and G. Guerra, "Polymeric sensing films absorbing organic guests into a nanoporous host crystalline phase," Sensors and Actuators, B: Chemical B 92, 255-261 (2003).
[CrossRef]

U.R.S.S.

L. D. Landau, and B. G. Levich, Acta Physiochim, U.R.S.S., 17, 42-54 (1942).

Other

A. W. Snyder, and J. D. Love, "Optical waveguide theory," (Chapman and Hall, New York, 1983).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1.
Fig. 1.

Transversal section of the investiated structure (not in scale).

Fig. 2.
Fig. 2.

Effective refractive index of the LP02-LP08 cladding modes versus the surrounding refractive index in HRI coated fiber with: (a) 150nm thin film; (b) 200nm; (c) 250nm and (d) 300nm thin film.

Fig. 3.
Fig. 3.

Coupling coefficients of the LP02-LP08 cladding modes versus the surrounding refractive index in HRI coated fiber with: (a) 150nm thin film; (b) 200nm; (c) 250nm and (d) 300nm thin film.

Fig. 4.
Fig. 4.

SRI corresponding to the maximum sensitivity versus the overlay thickness for first 7 cladding modes.

Fig. 5.
Fig. 5.

Cladding mode field in a 200nm coated LPG, before transition (SRI=1), in transition (SRI=1.40) and after transition (SRI=1.45): (a) LP02; (b) LP03; and (c) LP04.

Fig. 6.
Fig. 6.

SEM Photogram reveals an overlay thickness of about 150nm.

Fig. 7.
Fig. 7.

Bare and 150nm sPS coated LPG transmission spectra for the LP06 cladding mode.

Fig. 8.
Fig. 8.

Transmission spectra of a 150nm sPS coated LPG for different values of SRI in the range 1.33-1.472

Fig. 9.
Fig. 9.

Transmission spectra of a 150nm sPS coated LPG zoomed on LP07 and LP08 cladding modes

Fig. 10.
Fig. 10.

Wavelength shift of different cladding modes for the LPG coated with a 150nm sPS overlay versus SRI.

Fig. 11.
Fig. 11.

Peak Loss of different cladding modes versus SRI for the LPG coated with a 150nm sPS overlay.

Fig. 12.
Fig. 12.

Wavelength shift of different cladding modes for the LPG coated with a 140nm sPS overlay versus SRI.

Fig. 13.
Fig. 13.

Wavelength shift of a higher cladding mode for the LPG coated with a 180nm sPS overlay versus SRI.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

2 π λ ( n eff , 01 n eff , 0 i ) + s 0 ( ζ 01,01 ( λ ) ζ 0 i , 0 i ( λ ) ) = 2 π Λ
T = cos 2 ( k i L )
K vj , μi = ω 4 P 0 × ϕ = 0 2 π r = 0 Δε ( r , ϕ , z ) ψ vj ( r , ϕ ) ψ μi ( r , ϕ ) rdrdϕ
K 0 j , 0 i = [ s 0 + s 1 cos ( ( 2 π Λ ) z ) ] ζ 0 j , 0 i
ζ 0 j , 0 i = 2 πω 2 P 0 n 1 r = 0 r 1 R 0 j ( r ) R 0 i ( r ) rdr
R v ( r ) = { A 0 Z v , 1 ( u 1 r r 1 ) for r r 1 A 1 Z v , 2 ( u 2 r r 2 ) + A 2 T v , 2 ( u 2 r r 2 ) for r 1 < r r 2 A 3 Z v , 3 ( u 3 r r 3 ) + A 4 T v , 3 ( u 3 r r 3 ) for r 2 < r r 3 A 5 K v ( v r r 3 ) for r > r 3
Z v , i ( x ) = { J v ( x ) if n eff < n i I v ( x ) if n eff > n i
T v , i ( x ) = { Y v ( x ) if n eff < n i K v ( x ) if n eff > n i
u i = r i k 0 n i 2 n eff 2 for i = 1,2,3
v = r 3 k 0 n eff 2 n out 2
n 2 1 n 2 + 1 = N 3 ρβ
t = k ( U ) 2 3 ( ρ ) 1 2

Metrics