Abstract

In this paper, it is shown that a white light supercontinuum source generated in an air-silica microstructured optical fiber pumped with picosecond pulses offers the possibility to improve fringes visibility in interferometric acquisitions. Consequently, this source combined with a spectral interferometer, reaches high-resolution profilometric measurements. Phase calculation based on seven point algorithm can perform theoretically a subnanometer resolution. This method provides a one line profile of large surfaces from the analysis of a single shot image, without any mechanical scanning.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. K. Creath, "Phase measurement interferometry techniques," in Progress in Optics, Vol. XXVI, E. Wolf, Ed. (Elsevier Science Publishers, Amsterdam, 1988) pp. 349-393.
  2. P. J. Caber, "Interferometric profiler for rough surfaces," Appl. Opt. 32, 3438-3441 (1993).
    [CrossRef] [PubMed]
  3. P. Sandoz and G. Tribillon, "Profilometry by zero-order interference fringe identification," J. of Mod. Opt. 40, 1691-1700, (1993).
    [CrossRef]
  4. P. de Groot, L. Deck, "Surface profiling by analysis of white-light interferograms in the spatial frequency domain," J. of Mod. Opt. 42.2, 389-401 (1995).
    [CrossRef]
  5. L. Deck and P. de Groot, "High-speed noncontact profiler based on scanning white-light interferometry," Appl. Opt. 33, 7334-7338 (1994).
    [CrossRef] [PubMed]
  6. T. Dresel, G. Haüsler, and H. Venzke, "Three-dimensional sensing of rough surfaces by coherence radar," Appl. Opt. 31, 919-925 (1992).
    [CrossRef] [PubMed]
  7. K. G. Larkin, "Efficient nonlinear algorithm for envelope detection in white light interferometry," J. Opt. Soc. Am. A 13, 832-843 (1996).
    [CrossRef]
  8. P. Sandoz, R. Devillers and A. Plata, "Unambiguous profilometry by fringe-order identification in white light phase-shifting interferometry," J. of Mod. Opt. 44, 519-534 (1997).
    [CrossRef]
  9. P. de Groot, X. Colonna de Lega, J. Kramer, and M. Turzhitsky, "Determination of fringe order in white-light interference microscopy," Appl. Opt. 41, 4571-4578 (2002).
    [CrossRef] [PubMed]
  10. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito and J. G. Fujimoto. "Optical coherence tomography," Science 254, 1178-1181 (1991).
  11. J. Schwider and L. Zhou, "Dispersive interferometric profilometer," Opt. Lett. 19, 995-997 (1994).
    [CrossRef] [PubMed]
  12. P. Sandoz, G. Tribillon, and H. Perrin, "High-resolution profilometry by using calculation algorithms for spectroscopic analysis of white-light interferograms," J. of Mod. Opt. 43, 701-708 (1996).
    [CrossRef]
  13. T. Endo, Y. Yasuno, S. Makita, M. Itoh, and T. Yatagai, "Profilometry with line-field Fourier-domain interferometry," Opt. Express 13, 695-701 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-3-695.
    [CrossRef] [PubMed]
  14. B. Grajciar, M. Pircher, A. F. Fercher, and R. A. Leitgeb, "Parallel Fourier domain optical coherence tomography for in vivo measurement of the human eye," Opt. Express 13, 1131-1137 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-4-1131.
    [CrossRef] [PubMed]
  15. A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. Elzaiat, "Measurement of intraocular distances by backscattering spectral interferometry," Opt. Commun. 117, 43-48 (1995).
    [CrossRef]
  16. M. Wojtkowski, A. Kowalczyk, R. Leitgeb, and A. F. Fercher, "Full range complex spectral optical coherence tomography technique in eye imaging," Opt. Lett. 27, 1415-1417 (2002).
    [CrossRef]
  17. B. Grajciar, M. Pircher, A. F. Fercher, and R. A. Leitgeb, "Parallel Fourier domain optical coherence tomography for in vivo measurement of the human eye," Opt. Express 13, 1131-1137 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-4-1131.
    [CrossRef] [PubMed]
  18. P. Champert, V. Couderc, P. Leproux, S. Février, V. Tombelaine, L. Labonté, P. Roy, C. Froehly, and P. Nérin, "White-light supercontinuum generation in normally dispersive optical fiber using original multiwavelength pumping system," Opt. Express 12, 4366-4371 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-19-4366.
    [CrossRef] [PubMed]
  19. Y. Wang, Y. Zhao, J. Nelson, Z. Chen, and R. Windeler, "Ultrahigh-resolution optical coherence tomography by broadband continuum generation from a photonic crystal fiber," Opt. Lett. 28, 182-184 (2003).
    [CrossRef] [PubMed]
  20. W. Su, K. Shi, Z. Liu, B. Wang, K. Reichard, and S. Yin, "A large-depth-of-field projected fringe profilometry using supercontinuum light illumination," Opt. Express 13, 1025-1032 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-3-1025.
    [CrossRef] [PubMed]
  21. V. Tombelaine, C. Lesvigne, P. Leproux, L. Grossard, V. Couderc, J. Auguste, J. Blondy, G. Huss, and P. Pioger, "Ultra wide band supercontinuum generation in air-silica holey fibers by SHG-induced modulation instabilities," Opt. Express 13, 7399-7404 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-19-7399.
    [CrossRef] [PubMed]

Appl. Opt

P. de Groot, X. Colonna de Lega, J. Kramer, and M. Turzhitsky, "Determination of fringe order in white-light interference microscopy," Appl. Opt. 41, 4571-4578 (2002).
[CrossRef] [PubMed]

Appl. Opt.

J. of Mod. Opt.

P. Sandoz and G. Tribillon, "Profilometry by zero-order interference fringe identification," J. of Mod. Opt. 40, 1691-1700, (1993).
[CrossRef]

P. de Groot, L. Deck, "Surface profiling by analysis of white-light interferograms in the spatial frequency domain," J. of Mod. Opt. 42.2, 389-401 (1995).
[CrossRef]

P. Sandoz, R. Devillers and A. Plata, "Unambiguous profilometry by fringe-order identification in white light phase-shifting interferometry," J. of Mod. Opt. 44, 519-534 (1997).
[CrossRef]

P. Sandoz, G. Tribillon, and H. Perrin, "High-resolution profilometry by using calculation algorithms for spectroscopic analysis of white-light interferograms," J. of Mod. Opt. 43, 701-708 (1996).
[CrossRef]

J. Opt. Soc. Am. A

Opt. Commun.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. Elzaiat, "Measurement of intraocular distances by backscattering spectral interferometry," Opt. Commun. 117, 43-48 (1995).
[CrossRef]

Opt. Express

P. Champert, V. Couderc, P. Leproux, S. Février, V. Tombelaine, L. Labonté, P. Roy, C. Froehly, and P. Nérin, "White-light supercontinuum generation in normally dispersive optical fiber using original multiwavelength pumping system," Opt. Express 12, 4366-4371 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-19-4366.
[CrossRef] [PubMed]

W. Su, K. Shi, Z. Liu, B. Wang, K. Reichard, and S. Yin, "A large-depth-of-field projected fringe profilometry using supercontinuum light illumination," Opt. Express 13, 1025-1032 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-3-1025.
[CrossRef] [PubMed]

T. Endo, Y. Yasuno, S. Makita, M. Itoh, and T. Yatagai, "Profilometry with line-field Fourier-domain interferometry," Opt. Express 13, 695-701 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-3-695.
[CrossRef] [PubMed]

B. Grajciar, M. Pircher, A. F. Fercher, and R. A. Leitgeb, "Parallel Fourier domain optical coherence tomography for in vivo measurement of the human eye," Opt. Express 13, 1131-1137 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-4-1131.
[CrossRef] [PubMed]

B. Grajciar, M. Pircher, A. F. Fercher, and R. A. Leitgeb, "Parallel Fourier domain optical coherence tomography for in vivo measurement of the human eye," Opt. Express 13, 1131-1137 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-4-1131.
[CrossRef] [PubMed]

V. Tombelaine, C. Lesvigne, P. Leproux, L. Grossard, V. Couderc, J. Auguste, J. Blondy, G. Huss, and P. Pioger, "Ultra wide band supercontinuum generation in air-silica holey fibers by SHG-induced modulation instabilities," Opt. Express 13, 7399-7404 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-19-7399.
[CrossRef] [PubMed]

Opt. Lett.

Progress in Optics

K. Creath, "Phase measurement interferometry techniques," in Progress in Optics, Vol. XXVI, E. Wolf, Ed. (Elsevier Science Publishers, Amsterdam, 1988) pp. 349-393.

Science

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito and J. G. Fujimoto. "Optical coherence tomography," Science 254, 1178-1181 (1991).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

Spectral intensity distribution B(σ) in the visible range

Fig. 2.
Fig. 2.

Experimental set-up: white light spectral supercontinuum interferometer: with L1 (f1=60mm), L2 (f2=200mm), L3 (f3=400mm), L4 (f4=65mm), and L5 (f5=50mm).

Fig. 3.
Fig. 3.

Channelled spectrum performed with a white light supercontinuum sources (a) and an halogen lamp (b), and its one-line normalized intensity variation in (c) and (d).

Fig. 4.
Fig. 4.

Fringes visibility function with a white light supercontinuum source (in blue) and an halogen lamp (in red).

Fig. 5.
Fig. 5.

Simulation of an interferogram obtained with a low quality mirror

Fig. 6.
Fig. 6.

Non continuous model’s profile (in red) and the calculated profile with the seven point algorithm (in blue).

Fig. 7.
Fig. 7.

Error between the model and simulation.

Fig. 8.
Fig. 8.

Median filtered interferogram obtained with a flat mirror.

Fig. 9.
Fig. 9.

One line profile of a flat mirror.

Fig. 10.
Fig. 10.

Experimental median filtered interferogram obtained with a low quality mirror.

Fig. 11.
Fig. 11.

One line profile of the low quality mirror.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

I y σ = I 0 y σ . ( 1 + V y σ . cos ( Δ Φ 12 τ ( y ) σ ) ) ,
Δ Φ 12 τ ( y ) σ = 2 πσcτ ( y ) ,
z = 1 4 π [ Δ Φ 12 τ σ ] [ σ ] ,
δσ = Δσ 4 . n ,
Δ Φ 7 po int = tan 1 [ 7 ( I 3 I 5 ) ( I 1 I 7 ) 8 I 4 4 ( I 2 + I 6 ) ] ,

Metrics