Abstract

We demonstrate 80 times phase conjugation by four-wave mixing of pico-second pulses in a diode-pumped Nd:YVO4 amplifier. Slight pulse broadening as a result of four wave mixing processes was observed.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. T. Omatsu, T. Imaizumi, M. Amano, Y. Ojima and K. Watanabe, �??Multi-watt diffraction-limited picosecond pulses from a diode-pumped Nd:YVO4 amplifier with a photorefractive phase conjugate mirror ,�?? J. Opt. A 5 S467-S470 (2003).
    [CrossRef]
  2. T. Imaizumi, M. Goto, Y. Ojima and T.Omatsu, �??Characterization of a pico-second phase conjugate Nd:YVO4 laser system,�?? Japansese J. Appl. Phys.43 2515-2518 (2004).
    [CrossRef]
  3. A. Brignon, D. Geffroy, J. �??P. Huignard, M. H. Garrett and I. Mnushkina, �??Experimental investigations of the photorefractive properties of rhodium-doped BaTiO3 at 1.06 µm,�?? Opt. Commun. 137 311-316 (1997).
    [CrossRef]
  4. N. Hout, J. M. C. Jonathan, D. Rytz and G. Roosen, �??Self-pumped phase conjugation in a ring cavity at 1.06 µm in cw and nanosecond regimes using photorefractive BaTiO3:Rh,�?? Opt. Commun. 140 296-298 (1997).
    [CrossRef]
  5. R. S. Cudney, M. Kaczmarek, �??Light-induced removal of 180° ferroelectric domains in Rh:BaTiO3,�?? Opt. Express 7 323-328 (2000), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-7-9-323">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-7-9-323.</a>
    [CrossRef] [PubMed]
  6. J. C. Diel, I. C. McMicheal and H. V. Vanherzeele, �??Degenerate Four-Wave Mixing of Picosecond Pulses in a Saturable Amplification of a Dye laser,�?? IEEE J. Quantuum. Electron. QE-20 630-636 (1984).
    [CrossRef]
  7. K. Abe, M. Amano and T. Omatsu, �??Efficient phase conjugation by pico-second four-wave-mixing in solid-dye amplifier,�?? Opt. Express 12 1243-1248 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-7-1243">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-7-1243</a>
    [CrossRef] [PubMed]
  8. A. W. Tucker, M. Birnbaum, C. L. Fincher and J. W. Erler, �??Stimulated-emission cross section at 1064 and 1342 nm in Nd:YVO4,�?? J. Appl. Phys. 48 4907-4911 (1977).
    [CrossRef]
  9. R. A. Fields, M. Birnbaum and C. L. Fincher, �??Highly efficient Nd:YVO4 diode-laser end-pumped laser,�?? Appl. Phys. Lett. 51 1885-1886 (1987).
    [CrossRef]
  10. D. Shen, A.Liu, J. Song and K. Ueda, �??Efficient Operation of an Intracavity-Doubled Nd:YVO4 KTP Laser End Pumped by a High-Brightness Laser Diode,�?? Appl. Opt. 37 7785-7788 (1998).
    [CrossRef]
  11. J. E. Bernard and A J. Alcock, �??High-efficiency diode-pumped Nd:YVO4 slab laser,�?? Opt. Lett. 18 968-970 (1993).
    [CrossRef] [PubMed]
  12. J. E. Bernard, E. McCullough and A J. Alcock, �??High gain, diode-pumped Nd:YVO4 slab amplifier ,�?? Opt. Commun. 109 109-114 (1994).
    [CrossRef]
  13. S. Mailis, J. Hendrics, D. P. Shepherd, A. C. Tropper, N. Moore, R. W. Eason, G. J. Crofts, M. Trew and M. J.Damzen, �??High-phase-conjugate ref lectivity ( 800%) obtained by degenerate four-wave mixing in a continuous-wave diode-side-pumped Nd:YVO4 amplifier,�?? Opt. Lett. 24 972-974 (1999).
    [CrossRef]
  14. T. Omatsu, Y.Ojima, B. A. Thompson, A. Minassian and M. J. Damzen, �??150-times phase conjugation by degenerate four-wave mixing in a continuous-wave Nd:YVO4 amplifier ,�?? Appl. Phys. B 75 493-495 (2002).
    [CrossRef]
  15. A. Brignon, G. Feugnet, J. �??P. Huignard, and J. -P. Pocholle, �??Efficient degenerate four-wave mixing in a diode-pumped microchip Nd:YVO4 amplifier,�?? Opt. Lett. 20 548-550 (1995).
    [CrossRef] [PubMed]
  16. A. Brignon, G. Feugnet, J. �??P. Huignard, and J. -P. Pocholle, �??Multipass degenerate four-wave mixing in a diode-pumped Nd:YVO4 saturable amplifier ,�?? J. Opt. Soc. Am. B 12 1316-1325 (1995).
    [CrossRef]
  17. A. E. Siegman, Lasers (University Sicience Books, Mill Vally, 1986), Chap. 9.
  18. M. J. Damzen, Y. Matsumoto, G. J. Crofts and R. P. M. Green, �??Bragg-selectivity of a volume gain grating,�?? Opt. Commun. 123 182-188 (1996).
    [CrossRef]

Appl. Opt. (1)

Appl. Phys. B (1)

T. Omatsu, Y.Ojima, B. A. Thompson, A. Minassian and M. J. Damzen, �??150-times phase conjugation by degenerate four-wave mixing in a continuous-wave Nd:YVO4 amplifier ,�?? Appl. Phys. B 75 493-495 (2002).
[CrossRef]

Appl. Phys. Lett. (1)

R. A. Fields, M. Birnbaum and C. L. Fincher, �??Highly efficient Nd:YVO4 diode-laser end-pumped laser,�?? Appl. Phys. Lett. 51 1885-1886 (1987).
[CrossRef]

IEEE J. Quantuum. Electron. (1)

J. C. Diel, I. C. McMicheal and H. V. Vanherzeele, �??Degenerate Four-Wave Mixing of Picosecond Pulses in a Saturable Amplification of a Dye laser,�?? IEEE J. Quantuum. Electron. QE-20 630-636 (1984).
[CrossRef]

J. Appl. Phys. (1)

A. W. Tucker, M. Birnbaum, C. L. Fincher and J. W. Erler, �??Stimulated-emission cross section at 1064 and 1342 nm in Nd:YVO4,�?? J. Appl. Phys. 48 4907-4911 (1977).
[CrossRef]

J. Opt. A (1)

T. Omatsu, T. Imaizumi, M. Amano, Y. Ojima and K. Watanabe, �??Multi-watt diffraction-limited picosecond pulses from a diode-pumped Nd:YVO4 amplifier with a photorefractive phase conjugate mirror ,�?? J. Opt. A 5 S467-S470 (2003).
[CrossRef]

J. Opt. Soc. Am. B (1)

Japansese J. Appl. Phys. (1)

T. Imaizumi, M. Goto, Y. Ojima and T.Omatsu, �??Characterization of a pico-second phase conjugate Nd:YVO4 laser system,�?? Japansese J. Appl. Phys.43 2515-2518 (2004).
[CrossRef]

Opt. Commun. (4)

A. Brignon, D. Geffroy, J. �??P. Huignard, M. H. Garrett and I. Mnushkina, �??Experimental investigations of the photorefractive properties of rhodium-doped BaTiO3 at 1.06 µm,�?? Opt. Commun. 137 311-316 (1997).
[CrossRef]

N. Hout, J. M. C. Jonathan, D. Rytz and G. Roosen, �??Self-pumped phase conjugation in a ring cavity at 1.06 µm in cw and nanosecond regimes using photorefractive BaTiO3:Rh,�?? Opt. Commun. 140 296-298 (1997).
[CrossRef]

J. E. Bernard, E. McCullough and A J. Alcock, �??High gain, diode-pumped Nd:YVO4 slab amplifier ,�?? Opt. Commun. 109 109-114 (1994).
[CrossRef]

M. J. Damzen, Y. Matsumoto, G. J. Crofts and R. P. M. Green, �??Bragg-selectivity of a volume gain grating,�?? Opt. Commun. 123 182-188 (1996).
[CrossRef]

Opt. Express (2)

Opt. Lett. (3)

Other (1)

A. E. Siegman, Lasers (University Sicience Books, Mill Vally, 1986), Chap. 9.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Schematic diagram of experimental setup for phase conjugation. L1, L2,spherical lenses (focal length 100mm); HM1, HM2, half mirrors; PBS1, PBS2, polarizing beam splitters; FR, faraday rotator; HWP, half wave plate, P, prisms.

Fig. 2.
Fig. 2.

Experimental phase conjugate reflectivity as a function of normalized forward pump beam intensity.

Fig. 3.
Fig. 3.

Experimental far field spatial forms of (a) the probe beam, (b) the probe beam with the phase aberrating plate, (c) the phase conjugation and (d) the phase conjugation with the phase aberrating plate.

Fig. 4.
Fig. 4.

Experimental diffraction efficiency as a function of normalized forward pump beam intensity.

Fig. 5.
Fig. 5.

Intensity autocorrelation traces of the signal pulse (dashed line) and the phase conjugation (solid line).

Fig. 6.
Fig. 6.

Schematic diagram of numerically simulated model. K is wave number vector of the grating. k A 2 and k A 4 are wave number vectors of backward pump beam and phase conjugation at ω=ω0 . k A 2 and k A 4 represent wave number vectors at ω=ω0 +Δω(Δω>0). η(Δω) is the phase mismatching.

Fig. 7.
Fig. 7.

(a) Numerically simulated diffraction efficiency at the forward pump of 0.025 I s as a function of detuning frequency. (b) Numerically simulated wavelength selectivity as a function of normalized forward pump beam intensity

Fig. 8.
Fig. 8.

Experimental frequency spectra of the signal pulse (dashed line) and the phase coinjugation (solid line). Origin is 1064.5nm.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

dA 1 dz = γ A 1 κ A 3
dA 2 dz = γ A 2 + κ A 4
dA 3 dz = γ A 3 κ A 1
dA 4 dz = γ A 4 + κ A 2
γ = g ( Δ ω ) ( S 2 C 2 ) 1 2 + j η ( Δ ω )
κ = g ( Δ ω ) C [ 1 S ( S 2 C 2 ) 1 2 ]
g ( Δ ω ) = g 0 exp ( ln 2 ( Δ ω Δ ω 0 ) 2 )
η ( Δ ω ) = π Δ ω n 0 Λ 2 cos θ
S = 1 + j = 1 4 A 1 2 I s
C = 2 ( A 1 A 3 + A 2 A 4 ) I s

Metrics