Abstract

A fully 3-dimensional finite element model has been developed that simulates the internal temperature distribution of short-length high-power fiber lasers. We have validated the numerical model by building a short, cladding-pumped, Er-Yb-codoped fiber laser and measuring the core temperature during laser operation. A dual-end-pumped, actively cooled, fiber laser has generated >11 W CW output power at 1535 nm from only 11.9 cm of active fiber. Simulations indicate power-scaling possibilities with improved fiber and cooling designs.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Wang, “Thermal effects in kilowatt fiber lasers,” IEEE Photon. Tech. Lett. 16, 63–65 (2004).
    [CrossRef]
  2. Y. Jeong, J. K. Sahu, D. N. Payne, and J. Nilsson, “Ytterbium-doped large-core fibre laser with 1 Kw of continuous-wave output power,” Electron. Lett. 40, 470–471 (2004).
    [CrossRef]
  3. P. K. Cheo and G. G. King, “Clad-pumped Yb:Er codoped fiber lasers,” IEEE Photon. Tech. Lett. 13, 188–190 (2001).
    [CrossRef]
  4. J. Nilsson, S. Alam, J. A. Alvarez-Chavez, P. W. Turner, W.A. Clarkson, and A. B. Grudinin, “High-power and tunable operation of erbium-ytterbium co-doped cladding-pumped fiber lasers,” IEEE J. Quantum Electron. 39, 987–994 (2003).
    [CrossRef]
  5. J. K Sahu, Y. Jeong, D. J. Richardson, and J. Nilsson, “A 103 W erbium-ytterbium co-doped large-core fiber laser,” Opt. Commun. 227, 159–163 (2003).
    [CrossRef]
  6. C. Spiegelberg, J. Geng, Y. Hu, Y. Kaneda, S. Jiang, and N. Peyghambarian, “Low-noise narrow-linewidth fiber laser at 1550 nm,” J. Lightwave Tech. 22, 57–62 (2004).
    [CrossRef]
  7. L. Li, M. M. Morrell, T. Qiu, V. L. Temyanko, A. Schülzgen, A. Mafi, D. Kouznetsov, J. V. Moloney, T. Luo, S. Jiang, and N. Peyghambarian, “Short cladding-pumped Er/Yb phosphate fiber laser with 1.5 W output power,” Appl. Phys. Lett. 85, 2721–2723 (2004).
    [CrossRef]
  8. T. Qiu, L. Li, A. Schülzgen, V. L. Temyanko, T. Luo, S. Jiang, A. Mafi, J. V. Moloney, and N. Peyghambarian, “Generation of 9.3-W multimode and 4-W single-mode output from 7-cm short fiber lasers,” IEEE Photon. Technol. Lett. 16, 2592–2594 (2004).
    [CrossRef]
  9. D. C. Hanna, M. J. McCarthy, and P. J. Suni, “Thermal considerations in longitudinally pumped fibre and miniature bulk lasers,” in Fiber laser sources and amplifiers, M. J. F. Digonnet, eds., Proc. SPIE 1171, 160–166 (1989).
  10. L. Zenteno, “High-power double-clad fiber lasers,” J. Lightwave Tech. 11, 1435–1446 (1993).
    [CrossRef]
  11. D. C. Brown and H. J. Hoffman, “Thermal, stress, and thermo-optic effects in high average power double-clad silica fiber lasers,” IEEE J. Quantum Electron. 37, 207–217 (2001).
    [CrossRef]
  12. J. Limpert, T. Schreiber, A. Liem, S. Nolte, H. Zellmer, T. Peschel, V. Guyenot, and A. Tünnermann, “Thermal-optical properties of air-clad photonic crystal fiber lasers in high power operation,” Opt. Express 11, 2982–2990 (2003).
    [CrossRef] [PubMed]
  13. Y. Huo and P. K. Cheo, “Thermomechanical properties of high-power and high-energy Yb-doped silica fiber lasers,” IEEE Photon. Technol. Lett. 16, 759–761 (2004).
    [CrossRef]
  14. Finite element software ANSYS 6.1, http://www.ansys.com/
  15. M. D. Shinn, E. A. Sibley, M. G. Drexhage, and R. N. Brown, “Optical transitions of Er3+ ions in fluorozirconate glass,” Phys. Rev. B. 27, 6635–6648 (1983).
    [CrossRef]
  16. H. Berthou and C. K. Jörgensen, “Optical-fiber temperature sensor based on upconversion-excited fluorescence,” Opt. Lett. 15, 1100–1102 (1990).
    [CrossRef] [PubMed]
  17. J. P. Holman, Heat Transfer, (McGraw-Hill Book Company, New York, 1986), Appendix A.
  18. S. Jiang, M. Myers, and N. Peyghambarian, “Er3+ doped phosphate glasses and lasers,” J. Non-Cryst Solids 239, 143–148 (1998).
    [CrossRef]

2004 (6)

Y. Wang, “Thermal effects in kilowatt fiber lasers,” IEEE Photon. Tech. Lett. 16, 63–65 (2004).
[CrossRef]

Y. Jeong, J. K. Sahu, D. N. Payne, and J. Nilsson, “Ytterbium-doped large-core fibre laser with 1 Kw of continuous-wave output power,” Electron. Lett. 40, 470–471 (2004).
[CrossRef]

C. Spiegelberg, J. Geng, Y. Hu, Y. Kaneda, S. Jiang, and N. Peyghambarian, “Low-noise narrow-linewidth fiber laser at 1550 nm,” J. Lightwave Tech. 22, 57–62 (2004).
[CrossRef]

L. Li, M. M. Morrell, T. Qiu, V. L. Temyanko, A. Schülzgen, A. Mafi, D. Kouznetsov, J. V. Moloney, T. Luo, S. Jiang, and N. Peyghambarian, “Short cladding-pumped Er/Yb phosphate fiber laser with 1.5 W output power,” Appl. Phys. Lett. 85, 2721–2723 (2004).
[CrossRef]

T. Qiu, L. Li, A. Schülzgen, V. L. Temyanko, T. Luo, S. Jiang, A. Mafi, J. V. Moloney, and N. Peyghambarian, “Generation of 9.3-W multimode and 4-W single-mode output from 7-cm short fiber lasers,” IEEE Photon. Technol. Lett. 16, 2592–2594 (2004).
[CrossRef]

Y. Huo and P. K. Cheo, “Thermomechanical properties of high-power and high-energy Yb-doped silica fiber lasers,” IEEE Photon. Technol. Lett. 16, 759–761 (2004).
[CrossRef]

2003 (3)

J. Limpert, T. Schreiber, A. Liem, S. Nolte, H. Zellmer, T. Peschel, V. Guyenot, and A. Tünnermann, “Thermal-optical properties of air-clad photonic crystal fiber lasers in high power operation,” Opt. Express 11, 2982–2990 (2003).
[CrossRef] [PubMed]

J. Nilsson, S. Alam, J. A. Alvarez-Chavez, P. W. Turner, W.A. Clarkson, and A. B. Grudinin, “High-power and tunable operation of erbium-ytterbium co-doped cladding-pumped fiber lasers,” IEEE J. Quantum Electron. 39, 987–994 (2003).
[CrossRef]

J. K Sahu, Y. Jeong, D. J. Richardson, and J. Nilsson, “A 103 W erbium-ytterbium co-doped large-core fiber laser,” Opt. Commun. 227, 159–163 (2003).
[CrossRef]

2001 (2)

P. K. Cheo and G. G. King, “Clad-pumped Yb:Er codoped fiber lasers,” IEEE Photon. Tech. Lett. 13, 188–190 (2001).
[CrossRef]

D. C. Brown and H. J. Hoffman, “Thermal, stress, and thermo-optic effects in high average power double-clad silica fiber lasers,” IEEE J. Quantum Electron. 37, 207–217 (2001).
[CrossRef]

1998 (1)

S. Jiang, M. Myers, and N. Peyghambarian, “Er3+ doped phosphate glasses and lasers,” J. Non-Cryst Solids 239, 143–148 (1998).
[CrossRef]

1993 (1)

L. Zenteno, “High-power double-clad fiber lasers,” J. Lightwave Tech. 11, 1435–1446 (1993).
[CrossRef]

1990 (1)

1989 (1)

D. C. Hanna, M. J. McCarthy, and P. J. Suni, “Thermal considerations in longitudinally pumped fibre and miniature bulk lasers,” in Fiber laser sources and amplifiers, M. J. F. Digonnet, eds., Proc. SPIE 1171, 160–166 (1989).

1983 (1)

M. D. Shinn, E. A. Sibley, M. G. Drexhage, and R. N. Brown, “Optical transitions of Er3+ ions in fluorozirconate glass,” Phys. Rev. B. 27, 6635–6648 (1983).
[CrossRef]

Alam, S.

J. Nilsson, S. Alam, J. A. Alvarez-Chavez, P. W. Turner, W.A. Clarkson, and A. B. Grudinin, “High-power and tunable operation of erbium-ytterbium co-doped cladding-pumped fiber lasers,” IEEE J. Quantum Electron. 39, 987–994 (2003).
[CrossRef]

Alvarez-Chavez, J. A.

J. Nilsson, S. Alam, J. A. Alvarez-Chavez, P. W. Turner, W.A. Clarkson, and A. B. Grudinin, “High-power and tunable operation of erbium-ytterbium co-doped cladding-pumped fiber lasers,” IEEE J. Quantum Electron. 39, 987–994 (2003).
[CrossRef]

Berthou, H.

Brown, D. C.

D. C. Brown and H. J. Hoffman, “Thermal, stress, and thermo-optic effects in high average power double-clad silica fiber lasers,” IEEE J. Quantum Electron. 37, 207–217 (2001).
[CrossRef]

Brown, R. N.

M. D. Shinn, E. A. Sibley, M. G. Drexhage, and R. N. Brown, “Optical transitions of Er3+ ions in fluorozirconate glass,” Phys. Rev. B. 27, 6635–6648 (1983).
[CrossRef]

Cheo, P. K.

Y. Huo and P. K. Cheo, “Thermomechanical properties of high-power and high-energy Yb-doped silica fiber lasers,” IEEE Photon. Technol. Lett. 16, 759–761 (2004).
[CrossRef]

P. K. Cheo and G. G. King, “Clad-pumped Yb:Er codoped fiber lasers,” IEEE Photon. Tech. Lett. 13, 188–190 (2001).
[CrossRef]

Clarkson, W.A.

J. Nilsson, S. Alam, J. A. Alvarez-Chavez, P. W. Turner, W.A. Clarkson, and A. B. Grudinin, “High-power and tunable operation of erbium-ytterbium co-doped cladding-pumped fiber lasers,” IEEE J. Quantum Electron. 39, 987–994 (2003).
[CrossRef]

Drexhage, M. G.

M. D. Shinn, E. A. Sibley, M. G. Drexhage, and R. N. Brown, “Optical transitions of Er3+ ions in fluorozirconate glass,” Phys. Rev. B. 27, 6635–6648 (1983).
[CrossRef]

Geng, J.

C. Spiegelberg, J. Geng, Y. Hu, Y. Kaneda, S. Jiang, and N. Peyghambarian, “Low-noise narrow-linewidth fiber laser at 1550 nm,” J. Lightwave Tech. 22, 57–62 (2004).
[CrossRef]

Grudinin, A. B.

J. Nilsson, S. Alam, J. A. Alvarez-Chavez, P. W. Turner, W.A. Clarkson, and A. B. Grudinin, “High-power and tunable operation of erbium-ytterbium co-doped cladding-pumped fiber lasers,” IEEE J. Quantum Electron. 39, 987–994 (2003).
[CrossRef]

Guyenot, V.

Hanna, D. C.

D. C. Hanna, M. J. McCarthy, and P. J. Suni, “Thermal considerations in longitudinally pumped fibre and miniature bulk lasers,” in Fiber laser sources and amplifiers, M. J. F. Digonnet, eds., Proc. SPIE 1171, 160–166 (1989).

Hoffman, H. J.

D. C. Brown and H. J. Hoffman, “Thermal, stress, and thermo-optic effects in high average power double-clad silica fiber lasers,” IEEE J. Quantum Electron. 37, 207–217 (2001).
[CrossRef]

Holman, J. P.

J. P. Holman, Heat Transfer, (McGraw-Hill Book Company, New York, 1986), Appendix A.

Hu, Y.

C. Spiegelberg, J. Geng, Y. Hu, Y. Kaneda, S. Jiang, and N. Peyghambarian, “Low-noise narrow-linewidth fiber laser at 1550 nm,” J. Lightwave Tech. 22, 57–62 (2004).
[CrossRef]

Huo, Y.

Y. Huo and P. K. Cheo, “Thermomechanical properties of high-power and high-energy Yb-doped silica fiber lasers,” IEEE Photon. Technol. Lett. 16, 759–761 (2004).
[CrossRef]

Jeong, Y.

Y. Jeong, J. K. Sahu, D. N. Payne, and J. Nilsson, “Ytterbium-doped large-core fibre laser with 1 Kw of continuous-wave output power,” Electron. Lett. 40, 470–471 (2004).
[CrossRef]

J. K Sahu, Y. Jeong, D. J. Richardson, and J. Nilsson, “A 103 W erbium-ytterbium co-doped large-core fiber laser,” Opt. Commun. 227, 159–163 (2003).
[CrossRef]

Jiang, S.

C. Spiegelberg, J. Geng, Y. Hu, Y. Kaneda, S. Jiang, and N. Peyghambarian, “Low-noise narrow-linewidth fiber laser at 1550 nm,” J. Lightwave Tech. 22, 57–62 (2004).
[CrossRef]

L. Li, M. M. Morrell, T. Qiu, V. L. Temyanko, A. Schülzgen, A. Mafi, D. Kouznetsov, J. V. Moloney, T. Luo, S. Jiang, and N. Peyghambarian, “Short cladding-pumped Er/Yb phosphate fiber laser with 1.5 W output power,” Appl. Phys. Lett. 85, 2721–2723 (2004).
[CrossRef]

T. Qiu, L. Li, A. Schülzgen, V. L. Temyanko, T. Luo, S. Jiang, A. Mafi, J. V. Moloney, and N. Peyghambarian, “Generation of 9.3-W multimode and 4-W single-mode output from 7-cm short fiber lasers,” IEEE Photon. Technol. Lett. 16, 2592–2594 (2004).
[CrossRef]

S. Jiang, M. Myers, and N. Peyghambarian, “Er3+ doped phosphate glasses and lasers,” J. Non-Cryst Solids 239, 143–148 (1998).
[CrossRef]

Jörgensen, C. K.

Kaneda, Y.

C. Spiegelberg, J. Geng, Y. Hu, Y. Kaneda, S. Jiang, and N. Peyghambarian, “Low-noise narrow-linewidth fiber laser at 1550 nm,” J. Lightwave Tech. 22, 57–62 (2004).
[CrossRef]

King, G. G.

P. K. Cheo and G. G. King, “Clad-pumped Yb:Er codoped fiber lasers,” IEEE Photon. Tech. Lett. 13, 188–190 (2001).
[CrossRef]

Kouznetsov, D.

L. Li, M. M. Morrell, T. Qiu, V. L. Temyanko, A. Schülzgen, A. Mafi, D. Kouznetsov, J. V. Moloney, T. Luo, S. Jiang, and N. Peyghambarian, “Short cladding-pumped Er/Yb phosphate fiber laser with 1.5 W output power,” Appl. Phys. Lett. 85, 2721–2723 (2004).
[CrossRef]

Li, L.

T. Qiu, L. Li, A. Schülzgen, V. L. Temyanko, T. Luo, S. Jiang, A. Mafi, J. V. Moloney, and N. Peyghambarian, “Generation of 9.3-W multimode and 4-W single-mode output from 7-cm short fiber lasers,” IEEE Photon. Technol. Lett. 16, 2592–2594 (2004).
[CrossRef]

L. Li, M. M. Morrell, T. Qiu, V. L. Temyanko, A. Schülzgen, A. Mafi, D. Kouznetsov, J. V. Moloney, T. Luo, S. Jiang, and N. Peyghambarian, “Short cladding-pumped Er/Yb phosphate fiber laser with 1.5 W output power,” Appl. Phys. Lett. 85, 2721–2723 (2004).
[CrossRef]

Liem, A.

Limpert, J.

Luo, T.

T. Qiu, L. Li, A. Schülzgen, V. L. Temyanko, T. Luo, S. Jiang, A. Mafi, J. V. Moloney, and N. Peyghambarian, “Generation of 9.3-W multimode and 4-W single-mode output from 7-cm short fiber lasers,” IEEE Photon. Technol. Lett. 16, 2592–2594 (2004).
[CrossRef]

L. Li, M. M. Morrell, T. Qiu, V. L. Temyanko, A. Schülzgen, A. Mafi, D. Kouznetsov, J. V. Moloney, T. Luo, S. Jiang, and N. Peyghambarian, “Short cladding-pumped Er/Yb phosphate fiber laser with 1.5 W output power,” Appl. Phys. Lett. 85, 2721–2723 (2004).
[CrossRef]

Mafi, A.

L. Li, M. M. Morrell, T. Qiu, V. L. Temyanko, A. Schülzgen, A. Mafi, D. Kouznetsov, J. V. Moloney, T. Luo, S. Jiang, and N. Peyghambarian, “Short cladding-pumped Er/Yb phosphate fiber laser with 1.5 W output power,” Appl. Phys. Lett. 85, 2721–2723 (2004).
[CrossRef]

T. Qiu, L. Li, A. Schülzgen, V. L. Temyanko, T. Luo, S. Jiang, A. Mafi, J. V. Moloney, and N. Peyghambarian, “Generation of 9.3-W multimode and 4-W single-mode output from 7-cm short fiber lasers,” IEEE Photon. Technol. Lett. 16, 2592–2594 (2004).
[CrossRef]

McCarthy, M. J.

D. C. Hanna, M. J. McCarthy, and P. J. Suni, “Thermal considerations in longitudinally pumped fibre and miniature bulk lasers,” in Fiber laser sources and amplifiers, M. J. F. Digonnet, eds., Proc. SPIE 1171, 160–166 (1989).

Moloney, J. V.

T. Qiu, L. Li, A. Schülzgen, V. L. Temyanko, T. Luo, S. Jiang, A. Mafi, J. V. Moloney, and N. Peyghambarian, “Generation of 9.3-W multimode and 4-W single-mode output from 7-cm short fiber lasers,” IEEE Photon. Technol. Lett. 16, 2592–2594 (2004).
[CrossRef]

L. Li, M. M. Morrell, T. Qiu, V. L. Temyanko, A. Schülzgen, A. Mafi, D. Kouznetsov, J. V. Moloney, T. Luo, S. Jiang, and N. Peyghambarian, “Short cladding-pumped Er/Yb phosphate fiber laser with 1.5 W output power,” Appl. Phys. Lett. 85, 2721–2723 (2004).
[CrossRef]

Morrell, M. M.

L. Li, M. M. Morrell, T. Qiu, V. L. Temyanko, A. Schülzgen, A. Mafi, D. Kouznetsov, J. V. Moloney, T. Luo, S. Jiang, and N. Peyghambarian, “Short cladding-pumped Er/Yb phosphate fiber laser with 1.5 W output power,” Appl. Phys. Lett. 85, 2721–2723 (2004).
[CrossRef]

Myers, M.

S. Jiang, M. Myers, and N. Peyghambarian, “Er3+ doped phosphate glasses and lasers,” J. Non-Cryst Solids 239, 143–148 (1998).
[CrossRef]

Nilsson, J.

Y. Jeong, J. K. Sahu, D. N. Payne, and J. Nilsson, “Ytterbium-doped large-core fibre laser with 1 Kw of continuous-wave output power,” Electron. Lett. 40, 470–471 (2004).
[CrossRef]

J. Nilsson, S. Alam, J. A. Alvarez-Chavez, P. W. Turner, W.A. Clarkson, and A. B. Grudinin, “High-power and tunable operation of erbium-ytterbium co-doped cladding-pumped fiber lasers,” IEEE J. Quantum Electron. 39, 987–994 (2003).
[CrossRef]

J. K Sahu, Y. Jeong, D. J. Richardson, and J. Nilsson, “A 103 W erbium-ytterbium co-doped large-core fiber laser,” Opt. Commun. 227, 159–163 (2003).
[CrossRef]

Nolte, S.

Payne, D. N.

Y. Jeong, J. K. Sahu, D. N. Payne, and J. Nilsson, “Ytterbium-doped large-core fibre laser with 1 Kw of continuous-wave output power,” Electron. Lett. 40, 470–471 (2004).
[CrossRef]

Peschel, T.

Peyghambarian, N.

T. Qiu, L. Li, A. Schülzgen, V. L. Temyanko, T. Luo, S. Jiang, A. Mafi, J. V. Moloney, and N. Peyghambarian, “Generation of 9.3-W multimode and 4-W single-mode output from 7-cm short fiber lasers,” IEEE Photon. Technol. Lett. 16, 2592–2594 (2004).
[CrossRef]

C. Spiegelberg, J. Geng, Y. Hu, Y. Kaneda, S. Jiang, and N. Peyghambarian, “Low-noise narrow-linewidth fiber laser at 1550 nm,” J. Lightwave Tech. 22, 57–62 (2004).
[CrossRef]

L. Li, M. M. Morrell, T. Qiu, V. L. Temyanko, A. Schülzgen, A. Mafi, D. Kouznetsov, J. V. Moloney, T. Luo, S. Jiang, and N. Peyghambarian, “Short cladding-pumped Er/Yb phosphate fiber laser with 1.5 W output power,” Appl. Phys. Lett. 85, 2721–2723 (2004).
[CrossRef]

S. Jiang, M. Myers, and N. Peyghambarian, “Er3+ doped phosphate glasses and lasers,” J. Non-Cryst Solids 239, 143–148 (1998).
[CrossRef]

Qiu, T.

T. Qiu, L. Li, A. Schülzgen, V. L. Temyanko, T. Luo, S. Jiang, A. Mafi, J. V. Moloney, and N. Peyghambarian, “Generation of 9.3-W multimode and 4-W single-mode output from 7-cm short fiber lasers,” IEEE Photon. Technol. Lett. 16, 2592–2594 (2004).
[CrossRef]

L. Li, M. M. Morrell, T. Qiu, V. L. Temyanko, A. Schülzgen, A. Mafi, D. Kouznetsov, J. V. Moloney, T. Luo, S. Jiang, and N. Peyghambarian, “Short cladding-pumped Er/Yb phosphate fiber laser with 1.5 W output power,” Appl. Phys. Lett. 85, 2721–2723 (2004).
[CrossRef]

Richardson, D. J.

J. K Sahu, Y. Jeong, D. J. Richardson, and J. Nilsson, “A 103 W erbium-ytterbium co-doped large-core fiber laser,” Opt. Commun. 227, 159–163 (2003).
[CrossRef]

Sahu, J. K

J. K Sahu, Y. Jeong, D. J. Richardson, and J. Nilsson, “A 103 W erbium-ytterbium co-doped large-core fiber laser,” Opt. Commun. 227, 159–163 (2003).
[CrossRef]

Sahu, J. K.

Y. Jeong, J. K. Sahu, D. N. Payne, and J. Nilsson, “Ytterbium-doped large-core fibre laser with 1 Kw of continuous-wave output power,” Electron. Lett. 40, 470–471 (2004).
[CrossRef]

Schreiber, T.

Schülzgen, A.

L. Li, M. M. Morrell, T. Qiu, V. L. Temyanko, A. Schülzgen, A. Mafi, D. Kouznetsov, J. V. Moloney, T. Luo, S. Jiang, and N. Peyghambarian, “Short cladding-pumped Er/Yb phosphate fiber laser with 1.5 W output power,” Appl. Phys. Lett. 85, 2721–2723 (2004).
[CrossRef]

T. Qiu, L. Li, A. Schülzgen, V. L. Temyanko, T. Luo, S. Jiang, A. Mafi, J. V. Moloney, and N. Peyghambarian, “Generation of 9.3-W multimode and 4-W single-mode output from 7-cm short fiber lasers,” IEEE Photon. Technol. Lett. 16, 2592–2594 (2004).
[CrossRef]

Shinn, M. D.

M. D. Shinn, E. A. Sibley, M. G. Drexhage, and R. N. Brown, “Optical transitions of Er3+ ions in fluorozirconate glass,” Phys. Rev. B. 27, 6635–6648 (1983).
[CrossRef]

Sibley, E. A.

M. D. Shinn, E. A. Sibley, M. G. Drexhage, and R. N. Brown, “Optical transitions of Er3+ ions in fluorozirconate glass,” Phys. Rev. B. 27, 6635–6648 (1983).
[CrossRef]

Spiegelberg, C.

C. Spiegelberg, J. Geng, Y. Hu, Y. Kaneda, S. Jiang, and N. Peyghambarian, “Low-noise narrow-linewidth fiber laser at 1550 nm,” J. Lightwave Tech. 22, 57–62 (2004).
[CrossRef]

Suni, P. J.

D. C. Hanna, M. J. McCarthy, and P. J. Suni, “Thermal considerations in longitudinally pumped fibre and miniature bulk lasers,” in Fiber laser sources and amplifiers, M. J. F. Digonnet, eds., Proc. SPIE 1171, 160–166 (1989).

Temyanko, V. L.

T. Qiu, L. Li, A. Schülzgen, V. L. Temyanko, T. Luo, S. Jiang, A. Mafi, J. V. Moloney, and N. Peyghambarian, “Generation of 9.3-W multimode and 4-W single-mode output from 7-cm short fiber lasers,” IEEE Photon. Technol. Lett. 16, 2592–2594 (2004).
[CrossRef]

L. Li, M. M. Morrell, T. Qiu, V. L. Temyanko, A. Schülzgen, A. Mafi, D. Kouznetsov, J. V. Moloney, T. Luo, S. Jiang, and N. Peyghambarian, “Short cladding-pumped Er/Yb phosphate fiber laser with 1.5 W output power,” Appl. Phys. Lett. 85, 2721–2723 (2004).
[CrossRef]

Tünnermann, A.

Turner, P. W.

J. Nilsson, S. Alam, J. A. Alvarez-Chavez, P. W. Turner, W.A. Clarkson, and A. B. Grudinin, “High-power and tunable operation of erbium-ytterbium co-doped cladding-pumped fiber lasers,” IEEE J. Quantum Electron. 39, 987–994 (2003).
[CrossRef]

Wang, Y.

Y. Wang, “Thermal effects in kilowatt fiber lasers,” IEEE Photon. Tech. Lett. 16, 63–65 (2004).
[CrossRef]

Zellmer, H.

Zenteno, L.

L. Zenteno, “High-power double-clad fiber lasers,” J. Lightwave Tech. 11, 1435–1446 (1993).
[CrossRef]

Appl. Phys. Lett. (1)

L. Li, M. M. Morrell, T. Qiu, V. L. Temyanko, A. Schülzgen, A. Mafi, D. Kouznetsov, J. V. Moloney, T. Luo, S. Jiang, and N. Peyghambarian, “Short cladding-pumped Er/Yb phosphate fiber laser with 1.5 W output power,” Appl. Phys. Lett. 85, 2721–2723 (2004).
[CrossRef]

Electron. Lett. (1)

Y. Jeong, J. K. Sahu, D. N. Payne, and J. Nilsson, “Ytterbium-doped large-core fibre laser with 1 Kw of continuous-wave output power,” Electron. Lett. 40, 470–471 (2004).
[CrossRef]

IEEE J. Quantum Electron. (2)

J. Nilsson, S. Alam, J. A. Alvarez-Chavez, P. W. Turner, W.A. Clarkson, and A. B. Grudinin, “High-power and tunable operation of erbium-ytterbium co-doped cladding-pumped fiber lasers,” IEEE J. Quantum Electron. 39, 987–994 (2003).
[CrossRef]

D. C. Brown and H. J. Hoffman, “Thermal, stress, and thermo-optic effects in high average power double-clad silica fiber lasers,” IEEE J. Quantum Electron. 37, 207–217 (2001).
[CrossRef]

IEEE Photon. Tech. Lett. (2)

P. K. Cheo and G. G. King, “Clad-pumped Yb:Er codoped fiber lasers,” IEEE Photon. Tech. Lett. 13, 188–190 (2001).
[CrossRef]

Y. Wang, “Thermal effects in kilowatt fiber lasers,” IEEE Photon. Tech. Lett. 16, 63–65 (2004).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

T. Qiu, L. Li, A. Schülzgen, V. L. Temyanko, T. Luo, S. Jiang, A. Mafi, J. V. Moloney, and N. Peyghambarian, “Generation of 9.3-W multimode and 4-W single-mode output from 7-cm short fiber lasers,” IEEE Photon. Technol. Lett. 16, 2592–2594 (2004).
[CrossRef]

Y. Huo and P. K. Cheo, “Thermomechanical properties of high-power and high-energy Yb-doped silica fiber lasers,” IEEE Photon. Technol. Lett. 16, 759–761 (2004).
[CrossRef]

J. Lightwave Tech. (2)

L. Zenteno, “High-power double-clad fiber lasers,” J. Lightwave Tech. 11, 1435–1446 (1993).
[CrossRef]

C. Spiegelberg, J. Geng, Y. Hu, Y. Kaneda, S. Jiang, and N. Peyghambarian, “Low-noise narrow-linewidth fiber laser at 1550 nm,” J. Lightwave Tech. 22, 57–62 (2004).
[CrossRef]

J. Non-Cryst Solids (1)

S. Jiang, M. Myers, and N. Peyghambarian, “Er3+ doped phosphate glasses and lasers,” J. Non-Cryst Solids 239, 143–148 (1998).
[CrossRef]

Opt. Commun. (1)

J. K Sahu, Y. Jeong, D. J. Richardson, and J. Nilsson, “A 103 W erbium-ytterbium co-doped large-core fiber laser,” Opt. Commun. 227, 159–163 (2003).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. B. (1)

M. D. Shinn, E. A. Sibley, M. G. Drexhage, and R. N. Brown, “Optical transitions of Er3+ ions in fluorozirconate glass,” Phys. Rev. B. 27, 6635–6648 (1983).
[CrossRef]

Proc. SPIE (1)

D. C. Hanna, M. J. McCarthy, and P. J. Suni, “Thermal considerations in longitudinally pumped fibre and miniature bulk lasers,” in Fiber laser sources and amplifiers, M. J. F. Digonnet, eds., Proc. SPIE 1171, 160–166 (1989).

Other (2)

J. P. Holman, Heat Transfer, (McGraw-Hill Book Company, New York, 1986), Appendix A.

Finite element software ANSYS 6.1, http://www.ansys.com/

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

The drawings of a TEC-cooled short-length EYDFL assembly: (a) the side view (fiber size not in proportion); (b) an enlarged end view with FEM meshes. The air gap in (b) (light blue) is not shown in (a) and the inset of (b) is a microscopic photo of the real fiber in tubing. The drawing (b) shows that the cladding (magenta) has a D-shape and the core (red) is in close proximity to heat sink-the glass tubing (green).

Fig. 2.
Fig. 2.

(a) The signal vs. absorbed pump power plot of a 10.2-cm long, single-end pumped EYDFL, the squares are measured data and the red line is a linear fit; (b) normalized spectra of Er3+ green UPF at different pump levels.

Fig. 3.
Fig. 3.

Left Y-axis: the effective pump absorption coefficient α at different pump powers, the dots are the measured data and the line is fitted with formula α=αSCT+α°ABS/(1+P/PS). Right Y-axis: the highest core temperature at the pump end of a single-end-pumped EYDFL, the diamonds are measured data and the curve is the 3-D FEM simulated result.

Fig. 4.
Fig. 4.

The signal vs. launched pump power plot of the dual-end pumped EYDFL.

Fig. 5.
Fig. 5.

Temperature distributions in short TEC-cooled dual-end-pumped (except the magenta) EYDFLs: (a) core temperature along the fiber length; (b) temperature profile across the fiber facet at the stronger pump end. Green: simulations for the experimental configuration; magenta: single-end-pumped EYDFL; red: centered-core fiber; navy: double-cladding fiber in contact with Al heatsink.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

I H I s = C T exp ( Δ E HS K B T )
[ k ( r , T ) T ( r ) ] = q ( r )
P ( Z ) = P 0 η c e α Z
α = α SCT + α ABS = α SCT + α ABS 0 / ( 1 + P P S )
d Q ( Z ) = η HEAT α ABS P ( Z ) d Z
q ( r ) = q ( Z ) = 1 A d Q d Z
P ( Z ) = P 0 L η CL e α Z + P 0 R η CR e α ( L Z )

Metrics