Abstract

High fluences inside cavity ring-down spectroscopy optical resonators lend themselves to fluorescence or nonlinear optical spectroscopy. An instrument at 488 nm was developed to measure extinction, and fluorescence of aerosols. A detection limit of 6×10-9 cm- 1Hz-1/2 (0.6 Mm-1Hz-1/2) was achieved. The fluorescence spectral power collected from a single fluorescent microsphere was 10 to 20 pW/nm. This power is sufficient to obtain the spectrum of a single microsphere with a resolution of 10 nm and signal-to-noise ratio of ~10. The relative concentrations of two types of fluorescent microspheres were determined from a time-integrated fluorescence measurement of a mixture of both.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. Y. Pan, S. Holler, et al., �??Single-shot fluorescence spectra of individual micrometer-sized bioaerosols illuminated by a 351- or a 266-nm ultraviolet laser,�?? Opt. Lett. 24, 116-118 (1999).
    [CrossRef]
  2. Y.-L. Pan, J. Hartings, R. G. Pinnick, S. C. Hill, J. Halverson, and R. K. Chang, �??Single-Particle Fluorescence Spectrometer for Ambient Aerosols,�?? Aer. Science and Tech. 37, 627-638 (2003).
  3. F. L. Reyes, T. H. Jeys, et al., �??Bio-aerosol fluorescence sensor,�?? Field Anal. Chem. and Tech. 3, 240-248 (1999).
    [CrossRef]
  4. Y.-L. Pan, V. Boutou, R. K. Chang, I. Ozden, K. Davitt, and A. V. Nurmikko, �??Application of light-emitting diodes for aerosol fluorescence detection,�?? Optics Letters 28, 1707-1709 (2003).
    [CrossRef] [PubMed]
  5. J. J. L. Spaanjaars, J. J. t. Meulen, and G. Meijer, �??Relative predissociation rates of OH (A 2Σ+, v'=3) from combined cavity ring down�??Laser-induced fluorescence measurements,�?? Journal of Chemical Physics 107, 2242-2248 (1997).
    [CrossRef]
  6. J. Luque, J. B. Jeffries, G. P. Smith, D. R. Crosley, and J. J. Scherer, �??Combined cavity ringdown absorption and laser-induced fluorescence imaging measurements of CN(B-X) and CH(B-X) in lowpressure CH4-O2-N2 and CH4-NO-O2-N2 flames,�?? Combustion and Flame 126, 1725-1735 (2001).
    [CrossRef]
  7. A. W. Strawa, R. Casteneda, et al., �??The Measurements of Aerosol Optical Properties using Continuous Wave Cavity Ring-down Techniques,�?? J. Atmos. And Ocean Tech. 20, 454-465 (2003).
    [CrossRef]
  8. A. D. Sappey, E. S. Hill, et al. �??Fixed-frequency cavity ringdown diagnostic for atmospheric particulate matter,�?? Opt. Lett. 23, 954-956 (1998).
    [CrossRef]
  9. R. L. VanderWal and T. M. Ticich, �??Cavity ringdown and laser-induced incandescence measurements of soot,�?? Appl. Opt. 38, 1444-1451 (1999).
    [CrossRef]
  10. D. Smith and D. B. Atkinson, �??A portable pulsed cavity ring-down transmissometer for measurement of the optical extinction of the atmospheric aerosol,�?? Analyst 126, 1216-1220 (2001).
    [CrossRef] [PubMed]
  11. V. Bulatov, M. Fisher, and I. Schechter, �??Aerosol Analysis by cavity-ring-down spectroscopy,�?? Anal. Chim. Acta 466, 1-9 (2002).
    [CrossRef]
  12. Pettersson, A., E. R. Lovejoy, et al. "Measurement of aerosol optical extinction at 532 nm with pulsed cavity ring-down spectroscopy,�?? J. Aerosol Sci. 35, 995-1011(2004).
    [CrossRef]
  13. H. Mossmuller, R. Varma, et al.. "Cavity Ring-down and Cavity-Enhanced Detection Techniques for the Measurement for Aerosol Extinction,�?? Aerosol Sci. Tech. 39, 30-39(2005
    [CrossRef]
  14. B. A. Paldus, R. Provencal, and A. Kachanov, �??Cavity Enhanced Optical Detector,�?? U.S. Patent Application 10/738,599 (2004).
  15. K. W. Busch and M. A. Busch (Eds.), �??Cavity ring-down spectroscopy: An ultratrace absorption measurement technique,�?? ACS Symp. Ser 720 (1999).
    [CrossRef]
  16. J. Morville, D. Romanini, M. Chenevier, and A. Kachanov, �??Effects of laser phase noise on the injection of a high-finesse cavity�??, Appl. Opt. 41, 6980-6990 (2002).
    [CrossRef] [PubMed]
  17. K. L. Bechtel, R. N. Zare, et al., �??Moving Beyond Traditional UV-Vis Absorption Detection: Cavity Ring-Down Spectroscopy for HPLC,�?? Anal. Chem. 77, 1177-1182 (2005).
    [CrossRef] [PubMed]

ACS Symp. Ser (1)

K. W. Busch and M. A. Busch (Eds.), �??Cavity ring-down spectroscopy: An ultratrace absorption measurement technique,�?? ACS Symp. Ser 720 (1999).
[CrossRef]

Aer. Science and Tech. (1)

Y.-L. Pan, J. Hartings, R. G. Pinnick, S. C. Hill, J. Halverson, and R. K. Chang, �??Single-Particle Fluorescence Spectrometer for Ambient Aerosols,�?? Aer. Science and Tech. 37, 627-638 (2003).

Aerosol Sci. Tech. (1)

H. Mossmuller, R. Varma, et al.. "Cavity Ring-down and Cavity-Enhanced Detection Techniques for the Measurement for Aerosol Extinction,�?? Aerosol Sci. Tech. 39, 30-39(2005
[CrossRef]

Anal. Chem. (1)

K. L. Bechtel, R. N. Zare, et al., �??Moving Beyond Traditional UV-Vis Absorption Detection: Cavity Ring-Down Spectroscopy for HPLC,�?? Anal. Chem. 77, 1177-1182 (2005).
[CrossRef] [PubMed]

Anal. Chim. Acta (1)

V. Bulatov, M. Fisher, and I. Schechter, �??Aerosol Analysis by cavity-ring-down spectroscopy,�?? Anal. Chim. Acta 466, 1-9 (2002).
[CrossRef]

Analyst (1)

D. Smith and D. B. Atkinson, �??A portable pulsed cavity ring-down transmissometer for measurement of the optical extinction of the atmospheric aerosol,�?? Analyst 126, 1216-1220 (2001).
[CrossRef] [PubMed]

Appl. Opt. (2)

Atmos. And Ocean Tech. (1)

A. W. Strawa, R. Casteneda, et al., �??The Measurements of Aerosol Optical Properties using Continuous Wave Cavity Ring-down Techniques,�?? J. Atmos. And Ocean Tech. 20, 454-465 (2003).
[CrossRef]

Combustion and Flame (1)

J. Luque, J. B. Jeffries, G. P. Smith, D. R. Crosley, and J. J. Scherer, �??Combined cavity ringdown absorption and laser-induced fluorescence imaging measurements of CN(B-X) and CH(B-X) in lowpressure CH4-O2-N2 and CH4-NO-O2-N2 flames,�?? Combustion and Flame 126, 1725-1735 (2001).
[CrossRef]

Field Anal. Chem. and Tech. (1)

F. L. Reyes, T. H. Jeys, et al., �??Bio-aerosol fluorescence sensor,�?? Field Anal. Chem. and Tech. 3, 240-248 (1999).
[CrossRef]

J. Aerosol Sci. (1)

Pettersson, A., E. R. Lovejoy, et al. "Measurement of aerosol optical extinction at 532 nm with pulsed cavity ring-down spectroscopy,�?? J. Aerosol Sci. 35, 995-1011(2004).
[CrossRef]

Journal of Chemical Physics (1)

J. J. L. Spaanjaars, J. J. t. Meulen, and G. Meijer, �??Relative predissociation rates of OH (A 2Σ+, v'=3) from combined cavity ring down�??Laser-induced fluorescence measurements,�?? Journal of Chemical Physics 107, 2242-2248 (1997).
[CrossRef]

Opt. Lett. (2)

Optics Letters (1)

Y.-L. Pan, V. Boutou, R. K. Chang, I. Ozden, K. Davitt, and A. V. Nurmikko, �??Application of light-emitting diodes for aerosol fluorescence detection,�?? Optics Letters 28, 1707-1709 (2003).
[CrossRef] [PubMed]

Other (1)

B. A. Paldus, R. Provencal, and A. Kachanov, �??Cavity Enhanced Optical Detector,�?? U.S. Patent Application 10/738,599 (2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(Bottom) Cavity ring-down system used for simultaneous measurement of extinction and fluorescence of aerosols. (Top left): photograph of system, (Top right): rendering of the ring-down cavity with fluorescence detection optics attached.

Fig. 2.
Fig. 2.

(a) Cutaway view inside ring-down cavity showing the optical path and (b) gas handling system for ring-down system.

Fig. 3.
Fig. 3.

Measured ring-down time in air over 1000 events (ring-downs).

Fig. 4.
Fig. 4.

Comparison between: (a) 550 nm fluorescence channel and ring-down detector, (b) 650 nm fluorescence channel and ring-down detector, and (c) 550 nm and 650 nm channels.

Fig. 5.
Fig. 5.

Correlation between integrated fluorescence signals from the 550 nm and 650 nm fluorescence detectors when using the 550 nm microspheres.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

I ( t , λ ) = I o e t τ ( λ )
σ ext = 1 c ( 1 τ aer 1 τ 0 )
α min = 1 l eff ( Δ τ τ ) ,
I intracavity = P c T ξ 1 R
Ω = 4 π sin ( θ 4 ) 2
[ 550 spheres 650 spheres ] = [ 0.7 0.024 0.336 2 ] [ 550 channel 650 channel ]

Metrics