Abstract

In recent years, many groups have envisioned the possibility of integrating optical and electronic devices in a single chip. In this paper, we study the integration of a photonic crystal laser fabricated in InP with a silicon passive waveguide. The coupling of energy between a 2D photonic crystal (PhC) triangular lattice band-edge laser and waveguide positioned underneath is analyzed in this paper. We show that a 40% coupling could be achieved provided the distance between the laser and the waveguide is carefully adjusted. A general description of the fabrication process used to realize these devices is also included in this paper.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. D. Liu and C. Svensson, �??Power consumption estimation in CMOS VLSI circuit,�?? IEEE J. Solid-State Circuits 29, 663-670 (1994).
    [CrossRef]
  2. N. Savage, �??Linking with light,�?? IEEE Spectrum Online, Featured Article (2002).
    [CrossRef]
  3. S. Fan, P. R. Villeneuve, J. D. Joannopoulos, �??Channel drop filters in photonic crystals,�?? Opt. Express 3, 4-11 (1998), <a href=http://www.opticsexpress.org/abstract.cfm?URI=OPEX-3-1-4>http://www.opticsexpress.org/abstract.cfm?URI=OPEX-3-1-4</a>
    [CrossRef] [PubMed]
  4. T. Asano, M. Mochizuki, S. Noda, M. Okano, and M. Imada, �??A channel drop filter using a single defect in a 2-D photonic crystal slab: defect engineering with respect to polarization mode and ratio of emissions from upper and lower sides,�?? IEEE/OSA J. Lightwave Technol. 21, 1370-1376 (2003).
    [CrossRef]
  5. T. Matsumoto and T. Baba, " Photonic crystal k-vector superprism," IEEE/OSA J. Lightwave Technol. 22, 917-922 (2004).
    [CrossRef]
  6. S. Fan, S. G. Johnson, J. D. Joannopoulos, C. Manolatou, H. A. Haus, "Waveguide branches in photonic crystals,�?? J. Opt. Soc. Am. B 18, 162-165 (2001).
    [CrossRef]
  7. Y. G. Roh, S. Yoon, S. Kim, H. Jeon, S. H. Han, Q. H. Park, and I. Park,�?? Photonic crystal waveguides with multiple 90° bends,�?? Appl. Phys. Lett. 83, 231-233 (2003).
    [CrossRef]
  8. J. Smajic, C. Hafner, D. Erni, "Design and optimization of an achromatic photonic crystal bend,�?? Opt. Express 11, 1378-1384 (2003), <a href=http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-12-1378>http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-12-1378</a>
    [CrossRef] [PubMed]
  9. 0. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O�?? Brien, P. D. Dapkus, and I. Kim, "Two- dimensional photonic band-gap defect mode laser", Science 284, 1819-1821 (1999).
    [CrossRef] [PubMed]
  10. H. G. Park, J. K. Hwang, J. Huh, H. Y. Ryu, S. H. Kim, J. S. Kim, and Y. H. Lee, �??Characteristics of modified single-defect two-dimensional photonic crystal lasers,�?? IEEE J. Quantum Electronics 38, 1353-1365 (2002).
    [CrossRef]
  11. C. Monat, C. Seassal, X. Letartre, P. Regreny, M. Gendry, P. Rojo-Romeo, and P. Viktorovitch, �??Two-dimensional hexagonal-shaped microcavities formed in a two-dimensional photonic crystal on a InP membrane," J. Appl. Phys. 93, 23-31 (2003).
    [CrossRef]
  12. H. Y. Ryu, M. Notomi, G. H. Kim, and Y. H. Lee, "High quality-factor whispering gallery mode in the photonic crystal hexagonal disk cavity," Opt. Express 12, 1708-1719 (2004), <a href=http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-8-1708>http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-8-1708</a>
    [CrossRef] [PubMed]
  13. K. Srinivasan, P. E. Barclay, O. Painter, J. Chen, A. Y. Cho, and C. Gmachl, "Experimental demonstration of a high quality factor photonic crystal microcavity," Appl. Phys. Lett. 83, 1915-1917 (2003).
    [CrossRef]
  14. D. S. Song, S. H. Kim, H. G. Park, C. K. Kim, and Y. H. Lee, �?? Single-fundamental-mode photonic-crystal vertical-cavity surface-emitting lasers,�?? Appl. Phys. Lett. 80, 3901-3903 (2002).
    [CrossRef]
  15. N. Yokouchi, A. J. Danner, and K. D. Choquette,�??Vertical-cavity surface-emitting laser operating with photonic crystal seven-point defect structure,�?? Appl. Phys. Lett., 82, 3608-3610 (2003).
    [CrossRef]
  16. H. T. Hattori, X. Letartre, C. Seassal, P. Rojo-Romeo, J. L. Leclercq, and P. Viktorovitch, �??Analysis of hybrid photonic crystal vertical cavity surface emitting lasers,�?? Opt. Express 11, 1799-1808 (2003), <a href=http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-15-1799>http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-15-1799</a>
    [CrossRef] [PubMed]
  17. D. Ohnishi, T. Okano, M. Imada, and S. Noda, "Room temperature continuous wave operation of a surface-emitting two-dimensional photonic crystal diode laser," Opt. Express 12, 1562-1568 (2004), <a href=http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-8-1562>http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-8-1562</a>
    [CrossRef] [PubMed]
  18. C. Monat, C. Seassal, X. Letartre, P. Viktorovitch, P. Regreny, M. Gendry, P. Rojo-Romeo, G. Hollinger, E. Jalaguier, S. Pocas, and B. Aspar, "InP two-dimensional photonic crystal on silicon: In-plane Bloch mode laser," Appl. Phys. Lett. 81, 5102-5104, (2002).
    [CrossRef]
  19. S. H. Kwon, H. Y. Ryu, G. H. Kim, and Y. H. Lee, �??Photonic bandedge lasers in two-dimensional square-lattice photonic crystal slab,�?? Appl. Phys. Lett. 83, 3870-3872 (2002).
    [CrossRef]
  20. S. Y. Lin, J. G. Fleming, and I. El-Kady, "Experimental observation of photonic-crystal emission near a photonic band edge," Appl. Phys. Lett. 83, 593-595 (2003).
    [CrossRef]
  21. L. Florescu, K. Busch, and S. John, �??Semiclassical theory of lasing in photonic crystals,�?? J. Opt. Soc. Am. B 19, 2215-2223 (2002).
    [CrossRef]
  22. J. Topol�??ancik, S. Pradhan, P-C Yu, S. Gosh, and P. Bhattacharya, �??Electrically injected photonic crystal edge-emitting quantum-dot laser source,�?? IEEE Photon. Technol. Lett. 16, 960-962 (2004).
    [CrossRef]
  23. S. G. Johnson, and J. Joannopoulos, �??Bloch-iterative frequency domain methods for Maxwell�??s equations in a planewave basis,�?? Opt. Express 8, 173-190 (2001) <a href=http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-3-173>http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-3-173</a>
    [CrossRef] [PubMed]
  24. C. Monat, C. Seassal, X. Letartre, P. Regreny, P. Rojo-Romeo, P. Viktorovitch, M. Le Vassor d�??Yerville, D. Cassagne, J.P. Albert, E. Jalaguier, S. Pocas, and B. Aspar, �??Modal analysis and engineering of InP-based two-dimensional photonic crystal microlasers on a silicon wafer,�?? IEEE J. Quantum Electron. 39, 419-425 (2003).
    [CrossRef]

Appl. Phys. Lett. (7)

Y. G. Roh, S. Yoon, S. Kim, H. Jeon, S. H. Han, Q. H. Park, and I. Park,�?? Photonic crystal waveguides with multiple 90° bends,�?? Appl. Phys. Lett. 83, 231-233 (2003).
[CrossRef]

K. Srinivasan, P. E. Barclay, O. Painter, J. Chen, A. Y. Cho, and C. Gmachl, "Experimental demonstration of a high quality factor photonic crystal microcavity," Appl. Phys. Lett. 83, 1915-1917 (2003).
[CrossRef]

D. S. Song, S. H. Kim, H. G. Park, C. K. Kim, and Y. H. Lee, �?? Single-fundamental-mode photonic-crystal vertical-cavity surface-emitting lasers,�?? Appl. Phys. Lett. 80, 3901-3903 (2002).
[CrossRef]

N. Yokouchi, A. J. Danner, and K. D. Choquette,�??Vertical-cavity surface-emitting laser operating with photonic crystal seven-point defect structure,�?? Appl. Phys. Lett., 82, 3608-3610 (2003).
[CrossRef]

C. Monat, C. Seassal, X. Letartre, P. Viktorovitch, P. Regreny, M. Gendry, P. Rojo-Romeo, G. Hollinger, E. Jalaguier, S. Pocas, and B. Aspar, "InP two-dimensional photonic crystal on silicon: In-plane Bloch mode laser," Appl. Phys. Lett. 81, 5102-5104, (2002).
[CrossRef]

S. H. Kwon, H. Y. Ryu, G. H. Kim, and Y. H. Lee, �??Photonic bandedge lasers in two-dimensional square-lattice photonic crystal slab,�?? Appl. Phys. Lett. 83, 3870-3872 (2002).
[CrossRef]

S. Y. Lin, J. G. Fleming, and I. El-Kady, "Experimental observation of photonic-crystal emission near a photonic band edge," Appl. Phys. Lett. 83, 593-595 (2003).
[CrossRef]

IEEE J. Quantum Electron. (1)

C. Monat, C. Seassal, X. Letartre, P. Regreny, P. Rojo-Romeo, P. Viktorovitch, M. Le Vassor d�??Yerville, D. Cassagne, J.P. Albert, E. Jalaguier, S. Pocas, and B. Aspar, �??Modal analysis and engineering of InP-based two-dimensional photonic crystal microlasers on a silicon wafer,�?? IEEE J. Quantum Electron. 39, 419-425 (2003).
[CrossRef]

IEEE J. Quantum Electronics (1)

H. G. Park, J. K. Hwang, J. Huh, H. Y. Ryu, S. H. Kim, J. S. Kim, and Y. H. Lee, �??Characteristics of modified single-defect two-dimensional photonic crystal lasers,�?? IEEE J. Quantum Electronics 38, 1353-1365 (2002).
[CrossRef]

IEEE J. Solid-State Circuits (1)

D. Liu and C. Svensson, �??Power consumption estimation in CMOS VLSI circuit,�?? IEEE J. Solid-State Circuits 29, 663-670 (1994).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

J. Topol�??ancik, S. Pradhan, P-C Yu, S. Gosh, and P. Bhattacharya, �??Electrically injected photonic crystal edge-emitting quantum-dot laser source,�?? IEEE Photon. Technol. Lett. 16, 960-962 (2004).
[CrossRef]

IEEE Spectrum Online, 2002 (1)

N. Savage, �??Linking with light,�?? IEEE Spectrum Online, Featured Article (2002).
[CrossRef]

IEEE/OSA J. Lightwave Technol. (2)

T. Asano, M. Mochizuki, S. Noda, M. Okano, and M. Imada, �??A channel drop filter using a single defect in a 2-D photonic crystal slab: defect engineering with respect to polarization mode and ratio of emissions from upper and lower sides,�?? IEEE/OSA J. Lightwave Technol. 21, 1370-1376 (2003).
[CrossRef]

T. Matsumoto and T. Baba, " Photonic crystal k-vector superprism," IEEE/OSA J. Lightwave Technol. 22, 917-922 (2004).
[CrossRef]

J. Appl. Phys. (1)

C. Monat, C. Seassal, X. Letartre, P. Regreny, M. Gendry, P. Rojo-Romeo, and P. Viktorovitch, �??Two-dimensional hexagonal-shaped microcavities formed in a two-dimensional photonic crystal on a InP membrane," J. Appl. Phys. 93, 23-31 (2003).
[CrossRef]

J. Opt. Soc. Am. B (2)

Opt. Express (5)

H. T. Hattori, X. Letartre, C. Seassal, P. Rojo-Romeo, J. L. Leclercq, and P. Viktorovitch, �??Analysis of hybrid photonic crystal vertical cavity surface emitting lasers,�?? Opt. Express 11, 1799-1808 (2003), <a href=http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-15-1799>http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-15-1799</a>
[CrossRef] [PubMed]

D. Ohnishi, T. Okano, M. Imada, and S. Noda, "Room temperature continuous wave operation of a surface-emitting two-dimensional photonic crystal diode laser," Opt. Express 12, 1562-1568 (2004), <a href=http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-8-1562>http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-8-1562</a>
[CrossRef] [PubMed]

S. Fan, P. R. Villeneuve, J. D. Joannopoulos, �??Channel drop filters in photonic crystals,�?? Opt. Express 3, 4-11 (1998), <a href=http://www.opticsexpress.org/abstract.cfm?URI=OPEX-3-1-4>http://www.opticsexpress.org/abstract.cfm?URI=OPEX-3-1-4</a>
[CrossRef] [PubMed]

J. Smajic, C. Hafner, D. Erni, "Design and optimization of an achromatic photonic crystal bend,�?? Opt. Express 11, 1378-1384 (2003), <a href=http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-12-1378>http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-12-1378</a>
[CrossRef] [PubMed]

S. G. Johnson, and J. Joannopoulos, �??Bloch-iterative frequency domain methods for Maxwell�??s equations in a planewave basis,�?? Opt. Express 8, 173-190 (2001) <a href=http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-3-173>http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-3-173</a>
[CrossRef] [PubMed]

Science (1)

0. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O�?? Brien, P. D. Dapkus, and I. Kim, "Two- dimensional photonic band-gap defect mode laser", Science 284, 1819-1821 (1999).
[CrossRef] [PubMed]

Other (1)

H. Y. Ryu, M. Notomi, G. H. Kim, and Y. H. Lee, "High quality-factor whispering gallery mode in the photonic crystal hexagonal disk cavity," Opt. Express 12, 1708-1719 (2004), <a href=http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-8-1708>http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-8-1708</a>
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

A general scheme of a guided optical interconnect

Fig. 2.
Fig. 2.

(a). Z-cut view of the structure, showing a triangular lattice PhC and the waveguide situated in the bottom of the PhC. The waveguide is oriented in the ΓK direction (b) Vertical structure of the device, showing different layers. The silicon waveguide is surrounded (laterally) by a silica layer

Fig. 3.
Fig. 3.

Band diagram of the triangular lattice PhC structure

Fig. 4.
Fig. 4.

(a). 3D FDTD spectrum of |Hz2| as a function of the wavelength for the basic structure with no waveguide (b) Total quality factor (measured in the waveguide) and (c) quality factor related to coupling losses as a function of h2. (d) Coupling efficiency as a function of h2. Results for the basic structure.

Fig. 5.
Fig. 5.

(a). Field distribution (Hz component) in the PhC region (x-y plane). (b) Hz field distribution in the waveguide (x-y plane). (c) y-cut of the device, showing the field distribution of Hz. All these Fig. are for h2=600 nm

Fig. 6.
Fig. 6.

(a). Z-cut view of the structure, showing the main PhC shielded by another triangular lattice PhC with lower FF (operating at its bandgap). The waveguide situated at the bottom of the structure has a 1D grating in one of his sides, also operating at the bandgap. (b) 3D FDTD spectrum of |Hz2| as a function of the wavelength for this structure with no waveguide.

Fig. 7.
Fig. 7.

(a). Total quality factor (measured in the waveguide) as a function of h2. (b) Quality factor corresponding to coupling losses into the waveguide. (c) Coupling efficiency as a function of h2. Results for the shielded structure.

Fig. 8.
Fig. 8.

(a). |Hz| field distribution in the PhC region. (b) |Hz | field distribution in the waveguide. (c) |Hz| vertical field distribution in the x-z plane. All these Fig. are for h2=500 nm.

Fig. 9.
Fig. 9.

Schematic description of the process steps used to fabricate PhC III–V microlaser on top of Si waveguides.

Fig. 10.
Fig. 10.

SEM view of a III–V PhC micro-resonator (an hexagonal cavity) processed on top of a Si waveguide

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

K Γ K = 4 π 3 Λ
K Γ M = 2 π Λ 3
1 Q t = 1 Q i + 1 Q c
η c = 1 Q c 1 Q i + 1 Q c

Metrics