Abstract

The behavior of transient oscillations has been studied experimentally for the first time in a broadly tunable ytterbium fiber laser. Spectroscopic study of the relaxation frequency allows one to distinguish three- and four-level transitions and provides a useful tool for controlling the dynamics of pulsed lasers. Particularly, the relaxation oscillation frequency depends on the occupation of the terminal level of the laser transition and clearly shows that the laser transition becomes four-level at the long-wavelength tail of the gain spectrum of ytterbium fiber (λ>1060 nm). The wavelength dependence of relaxation oscillations can be used to determine the parameters of the gain material such as transition cross-section.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. L. Reekie, R. J. Mears, S. B. Poole, and D. N. Payne, �??Tunable Single-Mode Fiber Lasers,�?? J. Lightwave Technol. LT-4, 956�??960 (1986).
    [CrossRef]
  2. O. G. Okhotnikov and J. R. Salcedo, �??Spectroscopy of the transient oscillations in a Nd3+-doped fiber laser for the four-level 4F3/2-4I11/2 (1060 nm) and three-level 4F3/2-4I9/2 (900-nm) transitions,�?? Appl. Phys. Lett. 64, 2619�??2621 (1994).
    [CrossRef]
  3. C. R. �?. Cochláin, R. J. Mears, and G. Sherlock, �??Low threshold tunable soliton source,�?? IEEE Photon. Technol. Lett. 5, 25�??28 (1993).
    [CrossRef]
  4. K. Tamura, E. P. Ippen, and H. A. Haus, �??Optimization of filtering in soliton fiber lasers,�?? IEEE Photon. Technol. Lett. 6, 1433�??1435 (1994).
    [CrossRef]
  5. H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, �??Ytterbium-Doped Silica Fiber Lasers: Versatile Sources for the 1�??1.2 μm Region,�?? IEEE J. Sel. To Quantum Electron. 1, 2�??13 (1995).
    [CrossRef]
  6. O.G. Okhotnikov, L. Gomes, N. Xiang, T. Jouhti, and A. B. Grudinin, �??Mode-locked ytterbium fiber laser tunable in the 980�??1070 nm spectral range,�?? Opt. Lett. 28, 1522�??1524 (2003).
    [CrossRef] [PubMed]
  7. O.G. Okhotnikov, L. Gomes, N. Xiang, T. Jouhti, A. K. Chin, R. Singh and A.B. Grudinin, �??980 nm picosecond fiber laser,�?? IEEE Photon. Technol. Lett. 15, 1519�??1521 (2003).
    [CrossRef]
  8. O.G. Okhotnikov, V.V. Kuzmin and J.R. Salcedo, �??General intracavity method for laser transition characterization by relaxation oscillation spectral analysis,�?? IEEE Photon. Technol. Lett. 6, 362�??364 (1994).
    [CrossRef]
  9. O.G. Okhotnikov and J.R. Salcedo, �??Laser transitions characterization by spectral and thermal dependences of the transient oscillation,�?? Opt. Lett. 19, 1445�??1447 (1994).
    [CrossRef] [PubMed]
  10. C. J. Kennedy, J. D. Barry and R. R. Rice, �??Measurement of parameters in a mode-locked and frequency-doubled Nd:YAG laser using relaxation oscillations,�?? J. Appl. Phys. 47, 2447�??2449 (1976).
    [CrossRef]
  11. J. Harrison, G. A. Rines and P. F. Moulton, �??Long-pulse generation with a stable-relaxation-oscillation Nd:YLF laser,�?? Opt. Lett. 13, 309�??311 (1988).
    [CrossRef] [PubMed]

Appl. Phys. Lett. (1)

O. G. Okhotnikov and J. R. Salcedo, �??Spectroscopy of the transient oscillations in a Nd3+-doped fiber laser for the four-level 4F3/2-4I11/2 (1060 nm) and three-level 4F3/2-4I9/2 (900-nm) transitions,�?? Appl. Phys. Lett. 64, 2619�??2621 (1994).
[CrossRef]

IEEE J. Sel. To Quantum Electron. (1)

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, �??Ytterbium-Doped Silica Fiber Lasers: Versatile Sources for the 1�??1.2 μm Region,�?? IEEE J. Sel. To Quantum Electron. 1, 2�??13 (1995).
[CrossRef]

IEEE Photon. Technol. Lett. (4)

O.G. Okhotnikov, L. Gomes, N. Xiang, T. Jouhti, A. K. Chin, R. Singh and A.B. Grudinin, �??980 nm picosecond fiber laser,�?? IEEE Photon. Technol. Lett. 15, 1519�??1521 (2003).
[CrossRef]

O.G. Okhotnikov, V.V. Kuzmin and J.R. Salcedo, �??General intracavity method for laser transition characterization by relaxation oscillation spectral analysis,�?? IEEE Photon. Technol. Lett. 6, 362�??364 (1994).
[CrossRef]

C. R. �?. Cochláin, R. J. Mears, and G. Sherlock, �??Low threshold tunable soliton source,�?? IEEE Photon. Technol. Lett. 5, 25�??28 (1993).
[CrossRef]

K. Tamura, E. P. Ippen, and H. A. Haus, �??Optimization of filtering in soliton fiber lasers,�?? IEEE Photon. Technol. Lett. 6, 1433�??1435 (1994).
[CrossRef]

J. Appl. Phys. (1)

C. J. Kennedy, J. D. Barry and R. R. Rice, �??Measurement of parameters in a mode-locked and frequency-doubled Nd:YAG laser using relaxation oscillations,�?? J. Appl. Phys. 47, 2447�??2449 (1976).
[CrossRef]

J. Lightwave Technol. (1)

L. Reekie, R. J. Mears, S. B. Poole, and D. N. Payne, �??Tunable Single-Mode Fiber Lasers,�?? J. Lightwave Technol. LT-4, 956�??960 (1986).
[CrossRef]

Opt. Lett. (3)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Experimental setup. For 980 nm spectral range, a 915 nm pump was used with 30 cm Yb-fiber and three wavelength-division multiplexers (WDM) 1: 915/980, 2: 910/1024, 3: 920/1050. For 1030–1100 nm range, 142 cm-long Yb-fiber was pumped with 980 nm single-mode pigtailed diode laser through the cascade of three fiber WDMs 1: 980/1100, 2: 980/1030, 3: 980/1050.

Fig. 2.
Fig. 2.

Typical transient oscillations from an Yb3+-doped fiber laser. Pumping rate normalized to the threshold pumping rate is r–1=0.12 and lasing wavelength is λ=1053 nm.

Fig. 3.
Fig. 3.

relax/2π)2 versus normalized pumping rate (r–l) around 980 nm with the lasing wavelength as a parameter.

Fig. 4.
Fig. 4.

relax/2π)2 against normalized pumping rate (r-l) for 1030–1105 nm spectral range.

Fig. 5.
Fig. 5.

Wavelength dependence of the relaxation oscillation parameter (ωrelax/2π)2/(r-l) derived from the plots presented in Fig. 4 and of the Yb3+-ϕiβερ αττενυατιoν.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ω relax 2 = 1 τ c τ s ( 1 + c τ c σ η f l N ) ( r 1 ) .

Metrics