Abstract

We present an experimental and theoretical study of the transition from linear to nonlinear amplification of classical pump noise in a fiber Raman generator. In particular, we focus on the conversion of fluctuations in the fine temporal structure of Q-switched pump pulses into Stokes pulse energy fluctuations. We show that there is a distinct pump power domain where large scale fluctuations in the Stokes pulse energy result from the amplification of fluctuations in the temporal structure of pump pulses with stable energies. Dramatic changes in the shape of the Stokes pulse energy probability distribution also occur as the pump power is swept through the domain of large scale energy fluctuations.

© 2005 Optical Society of America

Full Article  |  PDF Article
Related Articles
Control of transverse spatial modes in transient stimulated Raman amplification

M. D. Duncan, R. Mahon, L. L. Tankersley, and J. Reintjes
J. Opt. Soc. Am. B 7(7) 1336-1345 (1990)

Stimulated Raman scattering: diffractive coupling in transient and steady-state regimes

Michael Scalora and Joseph W. Haus
J. Opt. Soc. Am. B 8(5) 1003-1012 (1991)

Measurement of a π Stokes phase jump in spontaneously initiated stimulated Raman scattering

Yasuhiro Akiyama, Katsumi Midorikawa, Minoru Obara, and Hideo Tashiro
J. Opt. Soc. Am. B 8(12) 2459-2465 (1991)

References

  • View by:
  • |
  • |
  • |

  1. S. V. Chernikov, N. S. Platonov, D. V. Gapontsev, D. I. Chang, M. J. Guy, and J. R. Taylor, “Raman Fibre Laser Operating at 1.24 µm,” Electron. Lett. 34, 680 (1998).
    [Crossref]
  2. Y. Emori, K. Tanaka, and S. Namiki, “100 nm Bandwidth Flat-Gain Raman Amplifiers Pumped and Gain Equalized by 12-Wavelength-Channel WDM Laser Diode Unit,” Electron. Lett. 35, 1355 (1999).
    [Crossref]
  3. D. V. Gapontsev, S. V. Chernikov, and J. R. Taylor, “Fibre Raman Amplifiers for Broadband Operation at 1.3 µm,” Opt. Commun. 166, 85–88 (1999).
    [Crossref]
  4. S. A. E. Lewis, S. V. Chernikov, and J. R. Taylor, “Fibre-Optic Tunable CW Raman Laser Operating Around 1.3 µm,” Opt. Commun. 182, 403–405 (2000).
    [Crossref]
  5. M. Prabhua, N. S. Kim, L. Jianrena, and K.-I. Ueda, “Simultaneous Two-Color CW Raman Fiber Laser With Maximum Output Power of 1.05 W/1239 nm and 0.95 W/1484 nm Using Phosphosilicate Fiber,” Opt. Commun. 182, 305–309 (2000).
    [Crossref]
  6. L. F. Mollenauer, A. R. Grant, and P. V. Mamyshev, “Time-Division Multiplexing of Pump Wavelengths to Achieve Ultrabroadband, Flat, Backward-Pumped Raman Gain,” Opt. Lett. 27, 592–594 (2002).
    [Crossref]
  7. D. A. Chestnut, C. J. S. de Matos, P. C. Reeves-Hall, and J. R. Taylor, “Copropagating and Counterpropagating Pumps in Second-Order Pumped Discrete Fiber Raman Amplifiers,” Opt. Lett. 27, 1708–1710 (2002).
    [Crossref]
  8. R. Waarts, V. Dominic, D. Giltner, and D. Mehuys, “Raman Amplification Enhances System Operation,” WDM Solutions pp. 27–32 (2000).
  9. I. A. Walmsley and M. G. Raymer, “Observation of Macroscopic Quantum Fluctuations in Stimulated Raman Scattering,” Phys. Rev. Lett. 50, 962–965 (1983).
    [Crossref]
  10. N. Fabricius, K. Nattermann, and D. von der Linde, “Macroscopic Manifestations of Quantum Fluctuations in Transient Stimulated Raman Scattering,” Phys. Rev. Lett. 52, 113–116 (1984).
    [Crossref]
  11. D. C. MacPherson, R. C. Swanson, and J. L. Carlsten, “Quantum Fluctuations in the Stimulated-Raman-Scattering Linewidth,” Phys. Rev. Lett. 23, 66–69 (1988).
    [Crossref]
  12. R. G. Smith, “Optical Power Handling Capacity of Low Loss Optical Fibers as Determined by Stimulated Raman and Brillouin Scattering,” Appl. Opt. 11, 2489–2494 (1972).
    [Crossref] [PubMed]
  13. J. Auyeung and A. Yariv, “Spontaneous and Stimulated Raman Scattering in Long Low Loss Fibers,” IEEE J. Quantum Electron. 14, 347–352 (1978).
    [Crossref]
  14. F. R. Barbosa, “Quasi-Stationary Multiple Stimulated Raman Generation in the Visible Using Optical Fibers,” Appl. Opt. 22, 3859–3863 (1983).
    [Crossref] [PubMed]
  15. R. H. Stolen, C. Lee, and R. K. Jain, “Development of the Stimulated Raman Spectrum in Single-Mode Silica Fibers,” J. Opt. Soc. Am. B 1, 652–657 (1984).
    [Crossref]
  16. K. X. Liu and E. Garmire, “Understanding the Formation of the SRS Stokes Spectrum in Fused Silica Fibers,” IEEE J. Quantum Electron. 27, 1022–1030 (1991).
    [Crossref]
  17. C. Yijiang and A. W. Snyder, “Saturation and Depletion Effect of Raman Scattering in Optical Fibers,” J. Light-wave Technol. 7, 1109–1116 (1989).
    [Crossref]
  18. D. Dahan, A. Bilenca, and G. Eisenstein, “Noise-Reduction Capabilities of a Raman-MediatedWavelength Converter,” Opt. Lett. 28, 634–636 (2003).
    [Crossref] [PubMed]
  19. M. Lewenstein, “Fluctuations in the Nonlinear Regime of Stimulated Raman Scattering,” Zeitschrift für Physik B 56, 69–75 (1984).
    [Crossref]
  20. I. A. Walmsley, M. G. Raymer, T. S. II, I. N. D. III, and J. D. Kafka, “Stabilization of Stokes Pulse Energies in the Nonlinear Regime of Stimulated Raman Scattering,” Opt. Commun. 53, 137–140 (1985).
    [Crossref]
  21. A. T. Georges, “Theory of Stimulated Raman Scattering in a Chaotic Incoherent Pump Field,” Opt. Commun. 41, 61–66 (1982).
    [Crossref]
  22. M. Trippenbach, K. Rzążewski, and M. G. Raymer, “Stimulated Raman Scattering of Colored Chaotic Light,” J. Opt. Soc. Am. B 1, 671–675 (1984).
    [Crossref]
  23. A. S. Grabtchikov, A. I. Vodtchits, and V. A. Orlovich, “Pulse-Energy Statistics in the Linear Regime of Stimulated Raman Scattering with a Broad-Band Pump,” Phys. Rev. A 56, 1666–1669 (1997).
    [Crossref]
  24. L. Garcia, J. Jenkins, Y. Lee, N. Poole, K. Salit, P. Sidereas, C. G. Goedde, and J. R. Thompson, “Influence of Classical Pump Noise on Long-Pulse Multiorder Stimulated Raman Scattering in Optical Fiber,” J. Opt. Soc. Am. B 19, 2727–2736 (2002).
    [Crossref]
  25. H.-S. Seo and K. Oh, “Optimization of Silica Fiber Raman Amplifier Using the Raman Frequency Modeling for an Arbitrary GeO2 Concentration in the Core,” Opt. Commun. 181, 145–151 (2000).
    [Crossref]
  26. W. P. Urquhart and P. J. R. Laybourn, “Stimulated Raman Scattering in Optical Fibers With Nonconstant Loss: A Multiwavelength Model,” Appl. Opt. 25, 2592–2599 (1986).
    [Crossref] [PubMed]
  27. G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic Press, Boston, 1995).
  28. J. Correa, E. Manzano, R. Tracy, and J. R. Thompson, “Correlations Between Intensity Fluctuations Within Stimulated BrillouinWaveforms Generated by Scattering of Q-Switched Pulses in Optical Fiber,” Opt. Commun. 242, 267–278 (2004).
    [Crossref]

2004 (1)

J. Correa, E. Manzano, R. Tracy, and J. R. Thompson, “Correlations Between Intensity Fluctuations Within Stimulated BrillouinWaveforms Generated by Scattering of Q-Switched Pulses in Optical Fiber,” Opt. Commun. 242, 267–278 (2004).
[Crossref]

2003 (1)

2002 (3)

2000 (3)

H.-S. Seo and K. Oh, “Optimization of Silica Fiber Raman Amplifier Using the Raman Frequency Modeling for an Arbitrary GeO2 Concentration in the Core,” Opt. Commun. 181, 145–151 (2000).
[Crossref]

S. A. E. Lewis, S. V. Chernikov, and J. R. Taylor, “Fibre-Optic Tunable CW Raman Laser Operating Around 1.3 µm,” Opt. Commun. 182, 403–405 (2000).
[Crossref]

M. Prabhua, N. S. Kim, L. Jianrena, and K.-I. Ueda, “Simultaneous Two-Color CW Raman Fiber Laser With Maximum Output Power of 1.05 W/1239 nm and 0.95 W/1484 nm Using Phosphosilicate Fiber,” Opt. Commun. 182, 305–309 (2000).
[Crossref]

1999 (2)

Y. Emori, K. Tanaka, and S. Namiki, “100 nm Bandwidth Flat-Gain Raman Amplifiers Pumped and Gain Equalized by 12-Wavelength-Channel WDM Laser Diode Unit,” Electron. Lett. 35, 1355 (1999).
[Crossref]

D. V. Gapontsev, S. V. Chernikov, and J. R. Taylor, “Fibre Raman Amplifiers for Broadband Operation at 1.3 µm,” Opt. Commun. 166, 85–88 (1999).
[Crossref]

1998 (1)

S. V. Chernikov, N. S. Platonov, D. V. Gapontsev, D. I. Chang, M. J. Guy, and J. R. Taylor, “Raman Fibre Laser Operating at 1.24 µm,” Electron. Lett. 34, 680 (1998).
[Crossref]

1997 (1)

A. S. Grabtchikov, A. I. Vodtchits, and V. A. Orlovich, “Pulse-Energy Statistics in the Linear Regime of Stimulated Raman Scattering with a Broad-Band Pump,” Phys. Rev. A 56, 1666–1669 (1997).
[Crossref]

1991 (1)

K. X. Liu and E. Garmire, “Understanding the Formation of the SRS Stokes Spectrum in Fused Silica Fibers,” IEEE J. Quantum Electron. 27, 1022–1030 (1991).
[Crossref]

1989 (1)

C. Yijiang and A. W. Snyder, “Saturation and Depletion Effect of Raman Scattering in Optical Fibers,” J. Light-wave Technol. 7, 1109–1116 (1989).
[Crossref]

1988 (1)

D. C. MacPherson, R. C. Swanson, and J. L. Carlsten, “Quantum Fluctuations in the Stimulated-Raman-Scattering Linewidth,” Phys. Rev. Lett. 23, 66–69 (1988).
[Crossref]

1986 (1)

1985 (1)

I. A. Walmsley, M. G. Raymer, T. S. II, I. N. D. III, and J. D. Kafka, “Stabilization of Stokes Pulse Energies in the Nonlinear Regime of Stimulated Raman Scattering,” Opt. Commun. 53, 137–140 (1985).
[Crossref]

1984 (4)

R. H. Stolen, C. Lee, and R. K. Jain, “Development of the Stimulated Raman Spectrum in Single-Mode Silica Fibers,” J. Opt. Soc. Am. B 1, 652–657 (1984).
[Crossref]

M. Trippenbach, K. Rzążewski, and M. G. Raymer, “Stimulated Raman Scattering of Colored Chaotic Light,” J. Opt. Soc. Am. B 1, 671–675 (1984).
[Crossref]

M. Lewenstein, “Fluctuations in the Nonlinear Regime of Stimulated Raman Scattering,” Zeitschrift für Physik B 56, 69–75 (1984).
[Crossref]

N. Fabricius, K. Nattermann, and D. von der Linde, “Macroscopic Manifestations of Quantum Fluctuations in Transient Stimulated Raman Scattering,” Phys. Rev. Lett. 52, 113–116 (1984).
[Crossref]

1983 (2)

I. A. Walmsley and M. G. Raymer, “Observation of Macroscopic Quantum Fluctuations in Stimulated Raman Scattering,” Phys. Rev. Lett. 50, 962–965 (1983).
[Crossref]

F. R. Barbosa, “Quasi-Stationary Multiple Stimulated Raman Generation in the Visible Using Optical Fibers,” Appl. Opt. 22, 3859–3863 (1983).
[Crossref] [PubMed]

1982 (1)

A. T. Georges, “Theory of Stimulated Raman Scattering in a Chaotic Incoherent Pump Field,” Opt. Commun. 41, 61–66 (1982).
[Crossref]

1978 (1)

J. Auyeung and A. Yariv, “Spontaneous and Stimulated Raman Scattering in Long Low Loss Fibers,” IEEE J. Quantum Electron. 14, 347–352 (1978).
[Crossref]

1972 (1)

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic Press, Boston, 1995).

Auyeung, J.

J. Auyeung and A. Yariv, “Spontaneous and Stimulated Raman Scattering in Long Low Loss Fibers,” IEEE J. Quantum Electron. 14, 347–352 (1978).
[Crossref]

Barbosa, F. R.

Bilenca, A.

Carlsten, J. L.

D. C. MacPherson, R. C. Swanson, and J. L. Carlsten, “Quantum Fluctuations in the Stimulated-Raman-Scattering Linewidth,” Phys. Rev. Lett. 23, 66–69 (1988).
[Crossref]

Chang, D. I.

S. V. Chernikov, N. S. Platonov, D. V. Gapontsev, D. I. Chang, M. J. Guy, and J. R. Taylor, “Raman Fibre Laser Operating at 1.24 µm,” Electron. Lett. 34, 680 (1998).
[Crossref]

Chernikov, S. V.

S. A. E. Lewis, S. V. Chernikov, and J. R. Taylor, “Fibre-Optic Tunable CW Raman Laser Operating Around 1.3 µm,” Opt. Commun. 182, 403–405 (2000).
[Crossref]

D. V. Gapontsev, S. V. Chernikov, and J. R. Taylor, “Fibre Raman Amplifiers for Broadband Operation at 1.3 µm,” Opt. Commun. 166, 85–88 (1999).
[Crossref]

S. V. Chernikov, N. S. Platonov, D. V. Gapontsev, D. I. Chang, M. J. Guy, and J. R. Taylor, “Raman Fibre Laser Operating at 1.24 µm,” Electron. Lett. 34, 680 (1998).
[Crossref]

Chestnut, D. A.

Correa, J.

J. Correa, E. Manzano, R. Tracy, and J. R. Thompson, “Correlations Between Intensity Fluctuations Within Stimulated BrillouinWaveforms Generated by Scattering of Q-Switched Pulses in Optical Fiber,” Opt. Commun. 242, 267–278 (2004).
[Crossref]

Dahan, D.

de Matos, C. J. S.

Dominic, V.

R. Waarts, V. Dominic, D. Giltner, and D. Mehuys, “Raman Amplification Enhances System Operation,” WDM Solutions pp. 27–32 (2000).

Eisenstein, G.

Emori, Y.

Y. Emori, K. Tanaka, and S. Namiki, “100 nm Bandwidth Flat-Gain Raman Amplifiers Pumped and Gain Equalized by 12-Wavelength-Channel WDM Laser Diode Unit,” Electron. Lett. 35, 1355 (1999).
[Crossref]

Fabricius, N.

N. Fabricius, K. Nattermann, and D. von der Linde, “Macroscopic Manifestations of Quantum Fluctuations in Transient Stimulated Raman Scattering,” Phys. Rev. Lett. 52, 113–116 (1984).
[Crossref]

Gapontsev, D. V.

D. V. Gapontsev, S. V. Chernikov, and J. R. Taylor, “Fibre Raman Amplifiers for Broadband Operation at 1.3 µm,” Opt. Commun. 166, 85–88 (1999).
[Crossref]

S. V. Chernikov, N. S. Platonov, D. V. Gapontsev, D. I. Chang, M. J. Guy, and J. R. Taylor, “Raman Fibre Laser Operating at 1.24 µm,” Electron. Lett. 34, 680 (1998).
[Crossref]

Garcia, L.

Garmire, E.

K. X. Liu and E. Garmire, “Understanding the Formation of the SRS Stokes Spectrum in Fused Silica Fibers,” IEEE J. Quantum Electron. 27, 1022–1030 (1991).
[Crossref]

Georges, A. T.

A. T. Georges, “Theory of Stimulated Raman Scattering in a Chaotic Incoherent Pump Field,” Opt. Commun. 41, 61–66 (1982).
[Crossref]

Giltner, D.

R. Waarts, V. Dominic, D. Giltner, and D. Mehuys, “Raman Amplification Enhances System Operation,” WDM Solutions pp. 27–32 (2000).

Goedde, C. G.

Grabtchikov, A. S.

A. S. Grabtchikov, A. I. Vodtchits, and V. A. Orlovich, “Pulse-Energy Statistics in the Linear Regime of Stimulated Raman Scattering with a Broad-Band Pump,” Phys. Rev. A 56, 1666–1669 (1997).
[Crossref]

Grant, A. R.

Guy, M. J.

S. V. Chernikov, N. S. Platonov, D. V. Gapontsev, D. I. Chang, M. J. Guy, and J. R. Taylor, “Raman Fibre Laser Operating at 1.24 µm,” Electron. Lett. 34, 680 (1998).
[Crossref]

II, T. S.

I. A. Walmsley, M. G. Raymer, T. S. II, I. N. D. III, and J. D. Kafka, “Stabilization of Stokes Pulse Energies in the Nonlinear Regime of Stimulated Raman Scattering,” Opt. Commun. 53, 137–140 (1985).
[Crossref]

III, I. N. D.

I. A. Walmsley, M. G. Raymer, T. S. II, I. N. D. III, and J. D. Kafka, “Stabilization of Stokes Pulse Energies in the Nonlinear Regime of Stimulated Raman Scattering,” Opt. Commun. 53, 137–140 (1985).
[Crossref]

Jain, R. K.

Jenkins, J.

Jianrena, L.

M. Prabhua, N. S. Kim, L. Jianrena, and K.-I. Ueda, “Simultaneous Two-Color CW Raman Fiber Laser With Maximum Output Power of 1.05 W/1239 nm and 0.95 W/1484 nm Using Phosphosilicate Fiber,” Opt. Commun. 182, 305–309 (2000).
[Crossref]

Kafka, J. D.

I. A. Walmsley, M. G. Raymer, T. S. II, I. N. D. III, and J. D. Kafka, “Stabilization of Stokes Pulse Energies in the Nonlinear Regime of Stimulated Raman Scattering,” Opt. Commun. 53, 137–140 (1985).
[Crossref]

Kim, N. S.

M. Prabhua, N. S. Kim, L. Jianrena, and K.-I. Ueda, “Simultaneous Two-Color CW Raman Fiber Laser With Maximum Output Power of 1.05 W/1239 nm and 0.95 W/1484 nm Using Phosphosilicate Fiber,” Opt. Commun. 182, 305–309 (2000).
[Crossref]

Laybourn, P. J. R.

Lee, C.

Lee, Y.

Lewenstein, M.

M. Lewenstein, “Fluctuations in the Nonlinear Regime of Stimulated Raman Scattering,” Zeitschrift für Physik B 56, 69–75 (1984).
[Crossref]

Lewis, S. A. E.

S. A. E. Lewis, S. V. Chernikov, and J. R. Taylor, “Fibre-Optic Tunable CW Raman Laser Operating Around 1.3 µm,” Opt. Commun. 182, 403–405 (2000).
[Crossref]

Liu, K. X.

K. X. Liu and E. Garmire, “Understanding the Formation of the SRS Stokes Spectrum in Fused Silica Fibers,” IEEE J. Quantum Electron. 27, 1022–1030 (1991).
[Crossref]

MacPherson, D. C.

D. C. MacPherson, R. C. Swanson, and J. L. Carlsten, “Quantum Fluctuations in the Stimulated-Raman-Scattering Linewidth,” Phys. Rev. Lett. 23, 66–69 (1988).
[Crossref]

Mamyshev, P. V.

Manzano, E.

J. Correa, E. Manzano, R. Tracy, and J. R. Thompson, “Correlations Between Intensity Fluctuations Within Stimulated BrillouinWaveforms Generated by Scattering of Q-Switched Pulses in Optical Fiber,” Opt. Commun. 242, 267–278 (2004).
[Crossref]

Mehuys, D.

R. Waarts, V. Dominic, D. Giltner, and D. Mehuys, “Raman Amplification Enhances System Operation,” WDM Solutions pp. 27–32 (2000).

Mollenauer, L. F.

Namiki, S.

Y. Emori, K. Tanaka, and S. Namiki, “100 nm Bandwidth Flat-Gain Raman Amplifiers Pumped and Gain Equalized by 12-Wavelength-Channel WDM Laser Diode Unit,” Electron. Lett. 35, 1355 (1999).
[Crossref]

Nattermann, K.

N. Fabricius, K. Nattermann, and D. von der Linde, “Macroscopic Manifestations of Quantum Fluctuations in Transient Stimulated Raman Scattering,” Phys. Rev. Lett. 52, 113–116 (1984).
[Crossref]

Oh, K.

H.-S. Seo and K. Oh, “Optimization of Silica Fiber Raman Amplifier Using the Raman Frequency Modeling for an Arbitrary GeO2 Concentration in the Core,” Opt. Commun. 181, 145–151 (2000).
[Crossref]

Orlovich, V. A.

A. S. Grabtchikov, A. I. Vodtchits, and V. A. Orlovich, “Pulse-Energy Statistics in the Linear Regime of Stimulated Raman Scattering with a Broad-Band Pump,” Phys. Rev. A 56, 1666–1669 (1997).
[Crossref]

Platonov, N. S.

S. V. Chernikov, N. S. Platonov, D. V. Gapontsev, D. I. Chang, M. J. Guy, and J. R. Taylor, “Raman Fibre Laser Operating at 1.24 µm,” Electron. Lett. 34, 680 (1998).
[Crossref]

Poole, N.

Prabhua, M.

M. Prabhua, N. S. Kim, L. Jianrena, and K.-I. Ueda, “Simultaneous Two-Color CW Raman Fiber Laser With Maximum Output Power of 1.05 W/1239 nm and 0.95 W/1484 nm Using Phosphosilicate Fiber,” Opt. Commun. 182, 305–309 (2000).
[Crossref]

Raymer, M. G.

I. A. Walmsley, M. G. Raymer, T. S. II, I. N. D. III, and J. D. Kafka, “Stabilization of Stokes Pulse Energies in the Nonlinear Regime of Stimulated Raman Scattering,” Opt. Commun. 53, 137–140 (1985).
[Crossref]

M. Trippenbach, K. Rzążewski, and M. G. Raymer, “Stimulated Raman Scattering of Colored Chaotic Light,” J. Opt. Soc. Am. B 1, 671–675 (1984).
[Crossref]

I. A. Walmsley and M. G. Raymer, “Observation of Macroscopic Quantum Fluctuations in Stimulated Raman Scattering,” Phys. Rev. Lett. 50, 962–965 (1983).
[Crossref]

Reeves-Hall, P. C.

Rzazewski, K.

Salit, K.

Seo, H.-S.

H.-S. Seo and K. Oh, “Optimization of Silica Fiber Raman Amplifier Using the Raman Frequency Modeling for an Arbitrary GeO2 Concentration in the Core,” Opt. Commun. 181, 145–151 (2000).
[Crossref]

Sidereas, P.

Smith, R. G.

Snyder, A. W.

C. Yijiang and A. W. Snyder, “Saturation and Depletion Effect of Raman Scattering in Optical Fibers,” J. Light-wave Technol. 7, 1109–1116 (1989).
[Crossref]

Stolen, R. H.

Swanson, R. C.

D. C. MacPherson, R. C. Swanson, and J. L. Carlsten, “Quantum Fluctuations in the Stimulated-Raman-Scattering Linewidth,” Phys. Rev. Lett. 23, 66–69 (1988).
[Crossref]

Tanaka, K.

Y. Emori, K. Tanaka, and S. Namiki, “100 nm Bandwidth Flat-Gain Raman Amplifiers Pumped and Gain Equalized by 12-Wavelength-Channel WDM Laser Diode Unit,” Electron. Lett. 35, 1355 (1999).
[Crossref]

Taylor, J. R.

D. A. Chestnut, C. J. S. de Matos, P. C. Reeves-Hall, and J. R. Taylor, “Copropagating and Counterpropagating Pumps in Second-Order Pumped Discrete Fiber Raman Amplifiers,” Opt. Lett. 27, 1708–1710 (2002).
[Crossref]

S. A. E. Lewis, S. V. Chernikov, and J. R. Taylor, “Fibre-Optic Tunable CW Raman Laser Operating Around 1.3 µm,” Opt. Commun. 182, 403–405 (2000).
[Crossref]

D. V. Gapontsev, S. V. Chernikov, and J. R. Taylor, “Fibre Raman Amplifiers for Broadband Operation at 1.3 µm,” Opt. Commun. 166, 85–88 (1999).
[Crossref]

S. V. Chernikov, N. S. Platonov, D. V. Gapontsev, D. I. Chang, M. J. Guy, and J. R. Taylor, “Raman Fibre Laser Operating at 1.24 µm,” Electron. Lett. 34, 680 (1998).
[Crossref]

Thompson, J. R.

J. Correa, E. Manzano, R. Tracy, and J. R. Thompson, “Correlations Between Intensity Fluctuations Within Stimulated BrillouinWaveforms Generated by Scattering of Q-Switched Pulses in Optical Fiber,” Opt. Commun. 242, 267–278 (2004).
[Crossref]

L. Garcia, J. Jenkins, Y. Lee, N. Poole, K. Salit, P. Sidereas, C. G. Goedde, and J. R. Thompson, “Influence of Classical Pump Noise on Long-Pulse Multiorder Stimulated Raman Scattering in Optical Fiber,” J. Opt. Soc. Am. B 19, 2727–2736 (2002).
[Crossref]

Tracy, R.

J. Correa, E. Manzano, R. Tracy, and J. R. Thompson, “Correlations Between Intensity Fluctuations Within Stimulated BrillouinWaveforms Generated by Scattering of Q-Switched Pulses in Optical Fiber,” Opt. Commun. 242, 267–278 (2004).
[Crossref]

Trippenbach, M.

Ueda, K.-I.

M. Prabhua, N. S. Kim, L. Jianrena, and K.-I. Ueda, “Simultaneous Two-Color CW Raman Fiber Laser With Maximum Output Power of 1.05 W/1239 nm and 0.95 W/1484 nm Using Phosphosilicate Fiber,” Opt. Commun. 182, 305–309 (2000).
[Crossref]

Urquhart, W. P.

Vodtchits, A. I.

A. S. Grabtchikov, A. I. Vodtchits, and V. A. Orlovich, “Pulse-Energy Statistics in the Linear Regime of Stimulated Raman Scattering with a Broad-Band Pump,” Phys. Rev. A 56, 1666–1669 (1997).
[Crossref]

von der Linde, D.

N. Fabricius, K. Nattermann, and D. von der Linde, “Macroscopic Manifestations of Quantum Fluctuations in Transient Stimulated Raman Scattering,” Phys. Rev. Lett. 52, 113–116 (1984).
[Crossref]

Waarts, R.

R. Waarts, V. Dominic, D. Giltner, and D. Mehuys, “Raman Amplification Enhances System Operation,” WDM Solutions pp. 27–32 (2000).

Walmsley, I. A.

I. A. Walmsley, M. G. Raymer, T. S. II, I. N. D. III, and J. D. Kafka, “Stabilization of Stokes Pulse Energies in the Nonlinear Regime of Stimulated Raman Scattering,” Opt. Commun. 53, 137–140 (1985).
[Crossref]

I. A. Walmsley and M. G. Raymer, “Observation of Macroscopic Quantum Fluctuations in Stimulated Raman Scattering,” Phys. Rev. Lett. 50, 962–965 (1983).
[Crossref]

Yariv, A.

J. Auyeung and A. Yariv, “Spontaneous and Stimulated Raman Scattering in Long Low Loss Fibers,” IEEE J. Quantum Electron. 14, 347–352 (1978).
[Crossref]

Yijiang, C.

C. Yijiang and A. W. Snyder, “Saturation and Depletion Effect of Raman Scattering in Optical Fibers,” J. Light-wave Technol. 7, 1109–1116 (1989).
[Crossref]

Appl. Opt. (3)

Electron. Lett. (2)

S. V. Chernikov, N. S. Platonov, D. V. Gapontsev, D. I. Chang, M. J. Guy, and J. R. Taylor, “Raman Fibre Laser Operating at 1.24 µm,” Electron. Lett. 34, 680 (1998).
[Crossref]

Y. Emori, K. Tanaka, and S. Namiki, “100 nm Bandwidth Flat-Gain Raman Amplifiers Pumped and Gain Equalized by 12-Wavelength-Channel WDM Laser Diode Unit,” Electron. Lett. 35, 1355 (1999).
[Crossref]

IEEE J. Quantum Electron. (2)

J. Auyeung and A. Yariv, “Spontaneous and Stimulated Raman Scattering in Long Low Loss Fibers,” IEEE J. Quantum Electron. 14, 347–352 (1978).
[Crossref]

K. X. Liu and E. Garmire, “Understanding the Formation of the SRS Stokes Spectrum in Fused Silica Fibers,” IEEE J. Quantum Electron. 27, 1022–1030 (1991).
[Crossref]

J. Light-wave Technol. (1)

C. Yijiang and A. W. Snyder, “Saturation and Depletion Effect of Raman Scattering in Optical Fibers,” J. Light-wave Technol. 7, 1109–1116 (1989).
[Crossref]

J. Opt. Soc. Am. B (3)

Opt. Commun. (7)

H.-S. Seo and K. Oh, “Optimization of Silica Fiber Raman Amplifier Using the Raman Frequency Modeling for an Arbitrary GeO2 Concentration in the Core,” Opt. Commun. 181, 145–151 (2000).
[Crossref]

I. A. Walmsley, M. G. Raymer, T. S. II, I. N. D. III, and J. D. Kafka, “Stabilization of Stokes Pulse Energies in the Nonlinear Regime of Stimulated Raman Scattering,” Opt. Commun. 53, 137–140 (1985).
[Crossref]

A. T. Georges, “Theory of Stimulated Raman Scattering in a Chaotic Incoherent Pump Field,” Opt. Commun. 41, 61–66 (1982).
[Crossref]

J. Correa, E. Manzano, R. Tracy, and J. R. Thompson, “Correlations Between Intensity Fluctuations Within Stimulated BrillouinWaveforms Generated by Scattering of Q-Switched Pulses in Optical Fiber,” Opt. Commun. 242, 267–278 (2004).
[Crossref]

D. V. Gapontsev, S. V. Chernikov, and J. R. Taylor, “Fibre Raman Amplifiers for Broadband Operation at 1.3 µm,” Opt. Commun. 166, 85–88 (1999).
[Crossref]

S. A. E. Lewis, S. V. Chernikov, and J. R. Taylor, “Fibre-Optic Tunable CW Raman Laser Operating Around 1.3 µm,” Opt. Commun. 182, 403–405 (2000).
[Crossref]

M. Prabhua, N. S. Kim, L. Jianrena, and K.-I. Ueda, “Simultaneous Two-Color CW Raman Fiber Laser With Maximum Output Power of 1.05 W/1239 nm and 0.95 W/1484 nm Using Phosphosilicate Fiber,” Opt. Commun. 182, 305–309 (2000).
[Crossref]

Opt. Lett. (3)

Phys. Rev. A (1)

A. S. Grabtchikov, A. I. Vodtchits, and V. A. Orlovich, “Pulse-Energy Statistics in the Linear Regime of Stimulated Raman Scattering with a Broad-Band Pump,” Phys. Rev. A 56, 1666–1669 (1997).
[Crossref]

Phys. Rev. Lett. (3)

I. A. Walmsley and M. G. Raymer, “Observation of Macroscopic Quantum Fluctuations in Stimulated Raman Scattering,” Phys. Rev. Lett. 50, 962–965 (1983).
[Crossref]

N. Fabricius, K. Nattermann, and D. von der Linde, “Macroscopic Manifestations of Quantum Fluctuations in Transient Stimulated Raman Scattering,” Phys. Rev. Lett. 52, 113–116 (1984).
[Crossref]

D. C. MacPherson, R. C. Swanson, and J. L. Carlsten, “Quantum Fluctuations in the Stimulated-Raman-Scattering Linewidth,” Phys. Rev. Lett. 23, 66–69 (1988).
[Crossref]

Zeitschrift für Physik B (1)

M. Lewenstein, “Fluctuations in the Nonlinear Regime of Stimulated Raman Scattering,” Zeitschrift für Physik B 56, 69–75 (1984).
[Crossref]

Other (2)

R. Waarts, V. Dominic, D. Giltner, and D. Mehuys, “Raman Amplification Enhances System Operation,” WDM Solutions pp. 27–32 (2000).

G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic Press, Boston, 1995).

Supplementary Material (2)

» Media 1: MOV (655 KB)     
» Media 2: MOV (1552 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Distribution of the modulation amplitudes used in the simulations.

Fig. 2.
Fig. 2.

Relative noise in the first Stokes energy as a function of input pump power. Circles: experimental data; Solid line: simulation results (classical fluctuations only); Dashed line: simulation results (classical and quantum fluctuations).

Fig. 3.
Fig. 3.

First Stokes pulse energy distributions for an input peak pump power of 11.5 watts. The simulation results include fluctuations from the pump pulse temporal modulations; green shading indicates pump pulses with a modulation depth greater than 45%. (Accompanying animation 660 kB.)

Fig. 4.
Fig. 4.

First Stokes pulse energy distributions for an input peak pump power of 11.5 watts. The simulation results include fluctuations from quantum initiation noise and the pump pulse temporal modulations; green shading indicates pump pulses with a modulation depth greater than 45%. (Accompanying animation 1592 kB.)

Fig. 5.
Fig. 5.

Experimental data for the relative noise in the first Stokes energy as a function of input pump power. Circles: multi-mode pump; Squares: single-mode pump.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

A u = S + r P ,
A f = T S S + r T P P ,
T S S A f = T S T S T P [ 1 T P A u A f ] .
σ A = σ S 2 + σ P 2 + σ n 2 .
A f = T S S + r T P P ,
σ S T S S = σ S 2 σ P 2 σ n 2 A f r T P P .
d P 0 d z = j = 1 N g 0 j ( P j + η 0 ) P 0 ,
d P i d z = λ 0 λ i j = 1 i g i j , i ( P i + η i j ) P i j λ 0 λ i j = 1 N i g i , i + j ( P i + j + η i ) P i .
η i = f ε i j = 1 N g i j , where ε i = π ( n 1 2 n 2 2 ) β λ i 4 ,
g i j = G 0 λ 0 λ i [ 1 + ( Δ Ω i j Δ Ω max Δ Ω F W 2 ) 2 ] 1 .

Metrics