Abstract

The generalized phase contrast (GPC) method has been applied to transform a single TEM00 beam into a manifold of counterpropagating-beam traps capable of real-time interactive manipulation of multiple microparticles in three dimensions (3D). This paper reports on the use of low numerical aperture (NA), non-immersion, objective lenses in an implementation of the GPC-based 3D trapping system. Contrary to high-NA based optical tweezers, the GPC trapping system demonstrated here operates with long working distance (>10 mm), and offers a wider manipulation region and a larger field of view for imaging through each of the two opposing objective lenses. As a consequence of the large working distance, simultaneous monitoring of the trapped particles in a second orthogonal observation plane is demonstrated.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. J. Glückstad, �??Phase contrast image synthesis,�?? Opt. Commun. 130, 225-230 (1996).
    [CrossRef]
  2. J. Glückstad and P. C. Mogensen, �??Optimal phase contrast in common-path interferometry,�?? Appl. Opt. 40, 268-282 (2001).
    [CrossRef]
  3. R. L. Eriksen, V. R. Daria and J. Glückstad, �??Fully dynamic multiple-beam optical tweezers,�?? Opt. Express 10, 597-602 (2002), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-14-597">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-14-597</a>
    [PubMed]
  4. P. J. Rodrigo, R. L Eriksen, V. R. Daria and J. Glückstad, �??Interactive light-driven and parallel manipulation of inhomogeneous particles,�?? Opt. Express 10, 1550�??1556 (2002), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-26-1550">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-26-1550</a>
    [PubMed]
  5. P. J. Rodrigo, V. R. Daria and J. Glückstad, �??Real-time interactive optical micromanipulation of a mixture of high-and low-index particles,�?? Opt. Express 12, 1417-1425 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-7-1417">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-7-1417</a>
    [CrossRef] [PubMed]
  6. V. R. Daria, P. J. Rodrigo and J. Glückstad, �??Dynamic array of dark optical traps,�?? Appl. Phys. Lett. 84, 323-325 (2004).
    [CrossRef]
  7. P. J. Rodrigo, V. R. Daria and J. Glückstad, �??Four-dimensional optical manipulation of colloidal particles,�?? Appl. Phys. Lett. 86, 074103 (2005).
    [CrossRef]
  8. P. J. Rodrigo, V. R. Daria and J. Glückstad, �??Real-time three-dimensional optical micromanipulation of multiple particles and living cells,�?? Opt. Lett. 29, 2270-2272 (2004).
    [CrossRef] [PubMed]
  9. A. Ashkin, �??Acceleration and trapping of particles by radiation pressure,�?? Phys. Rev. Lett. 24, 156-159 (1970).
    [CrossRef]
  10. E. Sidick, S. D. Collins and A. Knoesen, �??Trapping forces in a multiple-beam fiber-optic trap,�?? Appl. Opt. 36, 6423-6433 (1997).
    [CrossRef]
  11. D. L. J.Vossen, A. van der Horst, M. Dogterom and A. van Blaaderen, �??Optical tweezers and confocal microscopy for simultaneous three-dimensional manipulation and imaging in concentrated colloidal dispersions,�?? Rev. Sci. Instrum. 75, 2960-2970 (2004).
    [CrossRef]
  12. S. A. Tatarkova, A. E. Carruthers and K. Dholakia, �??One-dimensional optically bound arrays of microscopic particles,�?? Phys. Rev. Lett. 89, 283901 (2002).
    [CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (2)

V. R. Daria, P. J. Rodrigo and J. Glückstad, �??Dynamic array of dark optical traps,�?? Appl. Phys. Lett. 84, 323-325 (2004).
[CrossRef]

P. J. Rodrigo, V. R. Daria and J. Glückstad, �??Four-dimensional optical manipulation of colloidal particles,�?? Appl. Phys. Lett. 86, 074103 (2005).
[CrossRef]

Opt. Commun. (1)

J. Glückstad, �??Phase contrast image synthesis,�?? Opt. Commun. 130, 225-230 (1996).
[CrossRef]

Opt. Express (3)

Opt. Lett. (1)

Phys. Rev. Lett. (2)

A. Ashkin, �??Acceleration and trapping of particles by radiation pressure,�?? Phys. Rev. Lett. 24, 156-159 (1970).
[CrossRef]

S. A. Tatarkova, A. E. Carruthers and K. Dholakia, �??One-dimensional optically bound arrays of microscopic particles,�?? Phys. Rev. Lett. 89, 283901 (2002).
[CrossRef]

Rev. Sci. Instrum. (1)

D. L. J.Vossen, A. van der Horst, M. Dogterom and A. van Blaaderen, �??Optical tweezers and confocal microscopy for simultaneous three-dimensional manipulation and imaging in concentrated colloidal dispersions,�?? Rev. Sci. Instrum. 75, 2960-2970 (2004).
[CrossRef]

Supplementary Material (3)

» Media 1: AVI (2495 KB)     
» Media 2: AVI (1349 KB)     
» Media 3: AVI (1670 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Schematic showing the optical setup. The angles of incidence on the spatial light modulators are kept as small as possible. L1–L3 are achromatic lenses. Focal lengths of L1 and L2=300 mm. Focal length of L3=400 mm. Top and bottom objectives, 50x. A 20x objective is used for side view. The computer acquires video input from two cameras and controls the two SLMs based on user interaction.

Fig. 2.
Fig. 2.

(AVI, 2.5 MB) A: Four 3 µm polystyrene beads levitated 15 µm above the bottom surface. The reflection of the beads in the lower glass surface can be seen due to the slightly angled side view. B-D: User-interactive control of the relative z-positions of the beads showing ~30 µm axial dynamic range. The x-y viewing system is set to sharply image the plane 15 µm above the bottom surface.

Fig. 3.
Fig. 3.

A-B: (AVI, 1.4 MB) Three 3 µm beads at the vertices of a rotating imaginary triangle in the x-y plane while each particle encounters a height-stroke during each revolution. C-D: (AVI, 1.7 MB) Nine 3 µm beads collectively forming a 3D crystal-like structure rotated around the z-axis.

Metrics