Abstract

We describe the first observation of spontaneous Raman emission, stimulated amplification, and lasing in a SiGe waveguide. A pulsed optical gain of 16dB and a lasing threshold of 25 W peak pulse power (20 mW average) is observed for a Si1-xGex waveguide with x=7.5%. At the same time, a 40 GHz frequency downshift is observed in the Raman spectrum compared to that of a silicon waveguide. The spectral shift can be attributed to the combination of composition- and strain-induced shift in the optical phonon frequency. The prospect of Germanium-Silicon-on-Oxide as a flexible Raman medium is discussed.

© 2005 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Nonlinear optical phenomena in silicon waveguides: Modeling and applications

Q. Lin, Oskar J. Painter, and Govind P. Agrawal
Opt. Express 15(25) 16604-16644 (2007)

Broadband coherent anti-Stokes Raman scattering in silicon

Prakash Koonath, Daniel R. Solli, and Bahram Jalali
Opt. Lett. 35(3) 351-353 (2010)

Engineering nonlinearities in nanoscale optical systems: physics and applications in dispersion-engineered silicon nanophotonic wires

R. M. Osgood, N. C. Panoiu, J. I. Dadap, Xiaoping Liu, Xiaogang Chen, I-Wei Hsieh, E. Dulkeith, W. M.J. Green, and Y. A. Vlasov
Adv. Opt. Photon. 1(1) 162-235 (2009)

References

  • View by:
  • |
  • |
  • |

  1. R. Claps, D. Dimitropoulos, Y. Han, and B. Jalali, “Observation of Raman emission in silicon waveguides at 1.54 µm,” Opt. Express10, 1305–1313 (2002). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-22-1305
    [PubMed]
  2. R. Claps, D. Dimitropoulos, V. Raghunathan, Y. Han, and B. Jalali, “Observation of stimulated Raman amplification in silicon waveguides,” Opt. Express11, 1731–1739 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-15-1731
    [Crossref] [PubMed]
  3. TK Liang and HK Tsang; “Efficient Raman amplification in silicon-on-insulator waveguides,” Appl. Phys. Lett. 85, 3343–3345 (2004).
    [Crossref]
  4. O. Boyraz and B. Jalali, “Demonstration of a silicon Raman laser,” Opt. Express12, 5269–5273 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-21-5269
    [Crossref] [PubMed]
  5. H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “A continuous-wave Raman Silicon Laser,” Nature 433, 425–427 (2005).
    [Crossref]
  6. R. Claps, V. Raghunathan, D. Dimitropoulos, and B. Jalali, “Anti-Stokes Raman conversion in silicon waveguides,” Opt. Express11, 2862–2872 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-22-2862
    [Crossref] [PubMed]
  7. V. Raghunathan, R. Claps, D. Dimitropoulos, and B. Jalali, “Wavelength conversion in Silicon using Raman induced four-wave mixing,” Appl. Phys. Lett. 85, 34–36 (2004).
    [Crossref]
  8. R. L. Espinola, J. I. Dadap, R. M. Osgood, S. J. McNab, and Y. A. Vlasov, “Raman amplification in ultra small silicon-on-insulator wire waveguides,” Opt. Express12, 3713–3718 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-16-3713
    [Crossref] [PubMed]
  9. Q. Xu, V. R. Almeida, and M. Lipson, “Time-resolved study of Raman gain in highly confined silicon-on-insulator waveguides,” Opt. Express12, 4437–4442 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-19-4437
    [Crossref] [PubMed]
  10. V. Raghunathan, O. Boyraz, and B. Jalali, “20 dB on-off Raman amplification in Silicon waveguides,” Proceedings of CLEO, Baltimore (2005).
  11. HS Rong, AS Liu, R Nicolaescu, M Paniccia, O Cohen, and D Hak; “Raman gain and nonlinear optical absorption measurements in a low-loss silicon waveguide,” Appl. Phys. Lett. 85, 2196–2198 (2004).
    [Crossref]
  12. M. Paniccia, H.S. Rong, and A.S. Liu, “Net continuous wave optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering,” Opt. Express13, 519–525 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-2-519
    [Crossref] [PubMed]
  13. M.W.C. Dharma-wardana, G.C. Aers, D. J. Lockwood, and J.M. Baribeau, “Interpretation of Raman Spectra of Ge/Si ultrathin superlattices,” Phys. Rev B 41, 5319 (1990).
    [Crossref]
  14. M. Robillard, P.E. Jessop, D.M. Bruce, S. Janz, R.L. Williams, S. Mailhot, H. Lafontaine, S.J. Kovacic, and J.J. Ojha; “Strain-induced birefringence in Si1-xGex optical waveguides,” J. Vac. Sci. Technol. B 16, 1773–1776 (1998).
    [Crossref]
  15. D.-X Xu, P. Cheben, D. Dalacu, A. Delage, S. Janz, B. Lamontagne, M.-J. Picard, and W.N. Ye, “Eliminating the birefringence in silicon-on-insulator ridge waveguides by use of ridge cladding stress,” Opt. Lett. 29, 2384–2386 (2004).
    [Crossref] [PubMed]
  16. R. People and J.C. Bean; “Calculation of critical layer thickness versus lattice mismatch for GexSi1-x/Si strained-layer heterostructures,” Appl. Phys. Lett. 47, 322–324 (1985).
    [Crossref]
  17. G.P. Agrawal, “Nonlinear fiber optics,” Academic Press (1995)
  18. M.I. Alonso and K. Winer; “Raman spectra of c-Si1-xGex alloys,” Phys. Rev. B 39, 10056–10062 (1989).
    [Crossref]
  19. K. Kutsukake, N. Usami, T. Ujihara, K. Fujiwara, G. Sazaki, and K. Nakajima; “On the origin of strain fluctuation in strained-Si grown on SiGe-on-insulator and SiGe virtual substrates,” Appl. Phys. Lett. 85, 1335–1337 (2004).
    [Crossref]
  20. W. Byra, “Raman Scattering in Ge-Si alloys,” Solid State Comm.12, 253 (1973).
  21. J.C. Tsang, P.M. Mooney, F. Dacol, and J.O. Chou, “Measurements of alloy composition and strain in thin GexSi1-x layers,” J. of Appl. Phys. 75, 8098–8108 (1994).
    [Crossref]
  22. R. A. Logan, J.M. Rowell, and F.A. Trumbore; “Phonon Spectra of Ge-Si Alloys,” Phys. Rev. 136, A 1751–A 1755 (1964).
    [Crossref]
  23. H.K. Shin, D.J. Lockwood, and J.-M Baribeau; “Strain in coherent-wave SiGe/Si superlattices,” Solid State Comm. 114, 505–510 (2000).
    [Crossref]
  24. F. Schaffler, “Properties of Advanced Semiconductor Materials GaN, AlN, InN, BN, SiC, SiGe,” pp. 149–188, Eds. M.E. Levinshtein, S.L. Rumyantsev, and M.S. Shur, John Wiley & Sons, Inc., New York (2001).
  25. F. Cerdeira, C.J. Buchenauer, F. H. Pollack, and M. Cardona; “Stress-Induced Shifts of First-Order Raman Frequencies of Diamond- and Zinc-Blende-Type Semiconductors,” Phys. Rev. B 5, 580–593 (1972).
    [Crossref]
  26. E. Anastassakis, A. Pinczuk, E. Burstein, F.H. Pollack, and M. Cardona; “Effect of static uniaxial stress on the Raman spectrum of silicon,” Sol. State Comm. 8, 133–138 (1970).
    [Crossref]

2005 (1)

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “A continuous-wave Raman Silicon Laser,” Nature 433, 425–427 (2005).
[Crossref]

2004 (5)

V. Raghunathan, R. Claps, D. Dimitropoulos, and B. Jalali, “Wavelength conversion in Silicon using Raman induced four-wave mixing,” Appl. Phys. Lett. 85, 34–36 (2004).
[Crossref]

HS Rong, AS Liu, R Nicolaescu, M Paniccia, O Cohen, and D Hak; “Raman gain and nonlinear optical absorption measurements in a low-loss silicon waveguide,” Appl. Phys. Lett. 85, 2196–2198 (2004).
[Crossref]

TK Liang and HK Tsang; “Efficient Raman amplification in silicon-on-insulator waveguides,” Appl. Phys. Lett. 85, 3343–3345 (2004).
[Crossref]

D.-X Xu, P. Cheben, D. Dalacu, A. Delage, S. Janz, B. Lamontagne, M.-J. Picard, and W.N. Ye, “Eliminating the birefringence in silicon-on-insulator ridge waveguides by use of ridge cladding stress,” Opt. Lett. 29, 2384–2386 (2004).
[Crossref] [PubMed]

K. Kutsukake, N. Usami, T. Ujihara, K. Fujiwara, G. Sazaki, and K. Nakajima; “On the origin of strain fluctuation in strained-Si grown on SiGe-on-insulator and SiGe virtual substrates,” Appl. Phys. Lett. 85, 1335–1337 (2004).
[Crossref]

2000 (1)

H.K. Shin, D.J. Lockwood, and J.-M Baribeau; “Strain in coherent-wave SiGe/Si superlattices,” Solid State Comm. 114, 505–510 (2000).
[Crossref]

1998 (1)

M. Robillard, P.E. Jessop, D.M. Bruce, S. Janz, R.L. Williams, S. Mailhot, H. Lafontaine, S.J. Kovacic, and J.J. Ojha; “Strain-induced birefringence in Si1-xGex optical waveguides,” J. Vac. Sci. Technol. B 16, 1773–1776 (1998).
[Crossref]

1994 (1)

J.C. Tsang, P.M. Mooney, F. Dacol, and J.O. Chou, “Measurements of alloy composition and strain in thin GexSi1-x layers,” J. of Appl. Phys. 75, 8098–8108 (1994).
[Crossref]

1990 (1)

M.W.C. Dharma-wardana, G.C. Aers, D. J. Lockwood, and J.M. Baribeau, “Interpretation of Raman Spectra of Ge/Si ultrathin superlattices,” Phys. Rev B 41, 5319 (1990).
[Crossref]

1989 (1)

M.I. Alonso and K. Winer; “Raman spectra of c-Si1-xGex alloys,” Phys. Rev. B 39, 10056–10062 (1989).
[Crossref]

1985 (1)

R. People and J.C. Bean; “Calculation of critical layer thickness versus lattice mismatch for GexSi1-x/Si strained-layer heterostructures,” Appl. Phys. Lett. 47, 322–324 (1985).
[Crossref]

1972 (1)

F. Cerdeira, C.J. Buchenauer, F. H. Pollack, and M. Cardona; “Stress-Induced Shifts of First-Order Raman Frequencies of Diamond- and Zinc-Blende-Type Semiconductors,” Phys. Rev. B 5, 580–593 (1972).
[Crossref]

1970 (1)

E. Anastassakis, A. Pinczuk, E. Burstein, F.H. Pollack, and M. Cardona; “Effect of static uniaxial stress on the Raman spectrum of silicon,” Sol. State Comm. 8, 133–138 (1970).
[Crossref]

1964 (1)

R. A. Logan, J.M. Rowell, and F.A. Trumbore; “Phonon Spectra of Ge-Si Alloys,” Phys. Rev. 136, A 1751–A 1755 (1964).
[Crossref]

Aers, G.C.

M.W.C. Dharma-wardana, G.C. Aers, D. J. Lockwood, and J.M. Baribeau, “Interpretation of Raman Spectra of Ge/Si ultrathin superlattices,” Phys. Rev B 41, 5319 (1990).
[Crossref]

Agrawal, G.P.

G.P. Agrawal, “Nonlinear fiber optics,” Academic Press (1995)

Almeida, V. R.

Q. Xu, V. R. Almeida, and M. Lipson, “Time-resolved study of Raman gain in highly confined silicon-on-insulator waveguides,” Opt. Express12, 4437–4442 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-19-4437
[Crossref] [PubMed]

Alonso, M.I.

M.I. Alonso and K. Winer; “Raman spectra of c-Si1-xGex alloys,” Phys. Rev. B 39, 10056–10062 (1989).
[Crossref]

Anastassakis, E.

E. Anastassakis, A. Pinczuk, E. Burstein, F.H. Pollack, and M. Cardona; “Effect of static uniaxial stress on the Raman spectrum of silicon,” Sol. State Comm. 8, 133–138 (1970).
[Crossref]

Baribeau, J.-M

H.K. Shin, D.J. Lockwood, and J.-M Baribeau; “Strain in coherent-wave SiGe/Si superlattices,” Solid State Comm. 114, 505–510 (2000).
[Crossref]

Baribeau, J.M.

M.W.C. Dharma-wardana, G.C. Aers, D. J. Lockwood, and J.M. Baribeau, “Interpretation of Raman Spectra of Ge/Si ultrathin superlattices,” Phys. Rev B 41, 5319 (1990).
[Crossref]

Bean, J.C.

R. People and J.C. Bean; “Calculation of critical layer thickness versus lattice mismatch for GexSi1-x/Si strained-layer heterostructures,” Appl. Phys. Lett. 47, 322–324 (1985).
[Crossref]

Boyraz, O.

V. Raghunathan, O. Boyraz, and B. Jalali, “20 dB on-off Raman amplification in Silicon waveguides,” Proceedings of CLEO, Baltimore (2005).

O. Boyraz and B. Jalali, “Demonstration of a silicon Raman laser,” Opt. Express12, 5269–5273 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-21-5269
[Crossref] [PubMed]

Bruce, D.M.

M. Robillard, P.E. Jessop, D.M. Bruce, S. Janz, R.L. Williams, S. Mailhot, H. Lafontaine, S.J. Kovacic, and J.J. Ojha; “Strain-induced birefringence in Si1-xGex optical waveguides,” J. Vac. Sci. Technol. B 16, 1773–1776 (1998).
[Crossref]

Burstein, E.

E. Anastassakis, A. Pinczuk, E. Burstein, F.H. Pollack, and M. Cardona; “Effect of static uniaxial stress on the Raman spectrum of silicon,” Sol. State Comm. 8, 133–138 (1970).
[Crossref]

Byra, W.

W. Byra, “Raman Scattering in Ge-Si alloys,” Solid State Comm.12, 253 (1973).

Cardona, M.

E. Anastassakis, A. Pinczuk, E. Burstein, F.H. Pollack, and M. Cardona; “Effect of static uniaxial stress on the Raman spectrum of silicon,” Sol. State Comm. 8, 133–138 (1970).
[Crossref]

Cheben, P.

Chou, J.O.

J.C. Tsang, P.M. Mooney, F. Dacol, and J.O. Chou, “Measurements of alloy composition and strain in thin GexSi1-x layers,” J. of Appl. Phys. 75, 8098–8108 (1994).
[Crossref]

Claps, R.

V. Raghunathan, R. Claps, D. Dimitropoulos, and B. Jalali, “Wavelength conversion in Silicon using Raman induced four-wave mixing,” Appl. Phys. Lett. 85, 34–36 (2004).
[Crossref]

R. Claps, V. Raghunathan, D. Dimitropoulos, and B. Jalali, “Anti-Stokes Raman conversion in silicon waveguides,” Opt. Express11, 2862–2872 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-22-2862
[Crossref] [PubMed]

R. Claps, D. Dimitropoulos, V. Raghunathan, Y. Han, and B. Jalali, “Observation of stimulated Raman amplification in silicon waveguides,” Opt. Express11, 1731–1739 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-15-1731
[Crossref] [PubMed]

R. Claps, D. Dimitropoulos, Y. Han, and B. Jalali, “Observation of Raman emission in silicon waveguides at 1.54 µm,” Opt. Express10, 1305–1313 (2002). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-22-1305
[PubMed]

Cohen, O

HS Rong, AS Liu, R Nicolaescu, M Paniccia, O Cohen, and D Hak; “Raman gain and nonlinear optical absorption measurements in a low-loss silicon waveguide,” Appl. Phys. Lett. 85, 2196–2198 (2004).
[Crossref]

Cohen, O.

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “A continuous-wave Raman Silicon Laser,” Nature 433, 425–427 (2005).
[Crossref]

Dacol, F.

J.C. Tsang, P.M. Mooney, F. Dacol, and J.O. Chou, “Measurements of alloy composition and strain in thin GexSi1-x layers,” J. of Appl. Phys. 75, 8098–8108 (1994).
[Crossref]

Dadap, J. I.

R. L. Espinola, J. I. Dadap, R. M. Osgood, S. J. McNab, and Y. A. Vlasov, “Raman amplification in ultra small silicon-on-insulator wire waveguides,” Opt. Express12, 3713–3718 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-16-3713
[Crossref] [PubMed]

Dalacu, D.

Delage, A.

Dharma-wardana, M.W.C.

M.W.C. Dharma-wardana, G.C. Aers, D. J. Lockwood, and J.M. Baribeau, “Interpretation of Raman Spectra of Ge/Si ultrathin superlattices,” Phys. Rev B 41, 5319 (1990).
[Crossref]

Dimitropoulos, D.

V. Raghunathan, R. Claps, D. Dimitropoulos, and B. Jalali, “Wavelength conversion in Silicon using Raman induced four-wave mixing,” Appl. Phys. Lett. 85, 34–36 (2004).
[Crossref]

R. Claps, V. Raghunathan, D. Dimitropoulos, and B. Jalali, “Anti-Stokes Raman conversion in silicon waveguides,” Opt. Express11, 2862–2872 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-22-2862
[Crossref] [PubMed]

R. Claps, D. Dimitropoulos, V. Raghunathan, Y. Han, and B. Jalali, “Observation of stimulated Raman amplification in silicon waveguides,” Opt. Express11, 1731–1739 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-15-1731
[Crossref] [PubMed]

R. Claps, D. Dimitropoulos, Y. Han, and B. Jalali, “Observation of Raman emission in silicon waveguides at 1.54 µm,” Opt. Express10, 1305–1313 (2002). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-22-1305
[PubMed]

Espinola, R. L.

R. L. Espinola, J. I. Dadap, R. M. Osgood, S. J. McNab, and Y. A. Vlasov, “Raman amplification in ultra small silicon-on-insulator wire waveguides,” Opt. Express12, 3713–3718 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-16-3713
[Crossref] [PubMed]

Fang, A.

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “A continuous-wave Raman Silicon Laser,” Nature 433, 425–427 (2005).
[Crossref]

Fujiwara, K.

K. Kutsukake, N. Usami, T. Ujihara, K. Fujiwara, G. Sazaki, and K. Nakajima; “On the origin of strain fluctuation in strained-Si grown on SiGe-on-insulator and SiGe virtual substrates,” Appl. Phys. Lett. 85, 1335–1337 (2004).
[Crossref]

Hak, D

HS Rong, AS Liu, R Nicolaescu, M Paniccia, O Cohen, and D Hak; “Raman gain and nonlinear optical absorption measurements in a low-loss silicon waveguide,” Appl. Phys. Lett. 85, 2196–2198 (2004).
[Crossref]

Hak, D.

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “A continuous-wave Raman Silicon Laser,” Nature 433, 425–427 (2005).
[Crossref]

Han, Y.

R. Claps, D. Dimitropoulos, Y. Han, and B. Jalali, “Observation of Raman emission in silicon waveguides at 1.54 µm,” Opt. Express10, 1305–1313 (2002). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-22-1305
[PubMed]

R. Claps, D. Dimitropoulos, V. Raghunathan, Y. Han, and B. Jalali, “Observation of stimulated Raman amplification in silicon waveguides,” Opt. Express11, 1731–1739 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-15-1731
[Crossref] [PubMed]

Jalali, B.

V. Raghunathan, R. Claps, D. Dimitropoulos, and B. Jalali, “Wavelength conversion in Silicon using Raman induced four-wave mixing,” Appl. Phys. Lett. 85, 34–36 (2004).
[Crossref]

R. Claps, V. Raghunathan, D. Dimitropoulos, and B. Jalali, “Anti-Stokes Raman conversion in silicon waveguides,” Opt. Express11, 2862–2872 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-22-2862
[Crossref] [PubMed]

V. Raghunathan, O. Boyraz, and B. Jalali, “20 dB on-off Raman amplification in Silicon waveguides,” Proceedings of CLEO, Baltimore (2005).

R. Claps, D. Dimitropoulos, V. Raghunathan, Y. Han, and B. Jalali, “Observation of stimulated Raman amplification in silicon waveguides,” Opt. Express11, 1731–1739 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-15-1731
[Crossref] [PubMed]

R. Claps, D. Dimitropoulos, Y. Han, and B. Jalali, “Observation of Raman emission in silicon waveguides at 1.54 µm,” Opt. Express10, 1305–1313 (2002). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-22-1305
[PubMed]

O. Boyraz and B. Jalali, “Demonstration of a silicon Raman laser,” Opt. Express12, 5269–5273 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-21-5269
[Crossref] [PubMed]

Janz, S.

D.-X Xu, P. Cheben, D. Dalacu, A. Delage, S. Janz, B. Lamontagne, M.-J. Picard, and W.N. Ye, “Eliminating the birefringence in silicon-on-insulator ridge waveguides by use of ridge cladding stress,” Opt. Lett. 29, 2384–2386 (2004).
[Crossref] [PubMed]

M. Robillard, P.E. Jessop, D.M. Bruce, S. Janz, R.L. Williams, S. Mailhot, H. Lafontaine, S.J. Kovacic, and J.J. Ojha; “Strain-induced birefringence in Si1-xGex optical waveguides,” J. Vac. Sci. Technol. B 16, 1773–1776 (1998).
[Crossref]

Jessop, P.E.

M. Robillard, P.E. Jessop, D.M. Bruce, S. Janz, R.L. Williams, S. Mailhot, H. Lafontaine, S.J. Kovacic, and J.J. Ojha; “Strain-induced birefringence in Si1-xGex optical waveguides,” J. Vac. Sci. Technol. B 16, 1773–1776 (1998).
[Crossref]

Jones, R.

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “A continuous-wave Raman Silicon Laser,” Nature 433, 425–427 (2005).
[Crossref]

Kovacic, S.J.

M. Robillard, P.E. Jessop, D.M. Bruce, S. Janz, R.L. Williams, S. Mailhot, H. Lafontaine, S.J. Kovacic, and J.J. Ojha; “Strain-induced birefringence in Si1-xGex optical waveguides,” J. Vac. Sci. Technol. B 16, 1773–1776 (1998).
[Crossref]

Kutsukake, K.

K. Kutsukake, N. Usami, T. Ujihara, K. Fujiwara, G. Sazaki, and K. Nakajima; “On the origin of strain fluctuation in strained-Si grown on SiGe-on-insulator and SiGe virtual substrates,” Appl. Phys. Lett. 85, 1335–1337 (2004).
[Crossref]

Lafontaine, H.

M. Robillard, P.E. Jessop, D.M. Bruce, S. Janz, R.L. Williams, S. Mailhot, H. Lafontaine, S.J. Kovacic, and J.J. Ojha; “Strain-induced birefringence in Si1-xGex optical waveguides,” J. Vac. Sci. Technol. B 16, 1773–1776 (1998).
[Crossref]

Lamontagne, B.

Liang, TK

TK Liang and HK Tsang; “Efficient Raman amplification in silicon-on-insulator waveguides,” Appl. Phys. Lett. 85, 3343–3345 (2004).
[Crossref]

Lipson, M.

Q. Xu, V. R. Almeida, and M. Lipson, “Time-resolved study of Raman gain in highly confined silicon-on-insulator waveguides,” Opt. Express12, 4437–4442 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-19-4437
[Crossref] [PubMed]

Liu, A.

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “A continuous-wave Raman Silicon Laser,” Nature 433, 425–427 (2005).
[Crossref]

Liu, A.S.

M. Paniccia, H.S. Rong, and A.S. Liu, “Net continuous wave optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering,” Opt. Express13, 519–525 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-2-519
[Crossref] [PubMed]

Liu, AS

HS Rong, AS Liu, R Nicolaescu, M Paniccia, O Cohen, and D Hak; “Raman gain and nonlinear optical absorption measurements in a low-loss silicon waveguide,” Appl. Phys. Lett. 85, 2196–2198 (2004).
[Crossref]

Lockwood, D. J.

M.W.C. Dharma-wardana, G.C. Aers, D. J. Lockwood, and J.M. Baribeau, “Interpretation of Raman Spectra of Ge/Si ultrathin superlattices,” Phys. Rev B 41, 5319 (1990).
[Crossref]

Lockwood, D.J.

H.K. Shin, D.J. Lockwood, and J.-M Baribeau; “Strain in coherent-wave SiGe/Si superlattices,” Solid State Comm. 114, 505–510 (2000).
[Crossref]

Logan, R. A.

R. A. Logan, J.M. Rowell, and F.A. Trumbore; “Phonon Spectra of Ge-Si Alloys,” Phys. Rev. 136, A 1751–A 1755 (1964).
[Crossref]

Mailhot, S.

M. Robillard, P.E. Jessop, D.M. Bruce, S. Janz, R.L. Williams, S. Mailhot, H. Lafontaine, S.J. Kovacic, and J.J. Ojha; “Strain-induced birefringence in Si1-xGex optical waveguides,” J. Vac. Sci. Technol. B 16, 1773–1776 (1998).
[Crossref]

McNab, S. J.

R. L. Espinola, J. I. Dadap, R. M. Osgood, S. J. McNab, and Y. A. Vlasov, “Raman amplification in ultra small silicon-on-insulator wire waveguides,” Opt. Express12, 3713–3718 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-16-3713
[Crossref] [PubMed]

Mooney, P.M.

J.C. Tsang, P.M. Mooney, F. Dacol, and J.O. Chou, “Measurements of alloy composition and strain in thin GexSi1-x layers,” J. of Appl. Phys. 75, 8098–8108 (1994).
[Crossref]

Nakajima, K.

K. Kutsukake, N. Usami, T. Ujihara, K. Fujiwara, G. Sazaki, and K. Nakajima; “On the origin of strain fluctuation in strained-Si grown on SiGe-on-insulator and SiGe virtual substrates,” Appl. Phys. Lett. 85, 1335–1337 (2004).
[Crossref]

Nicolaescu, R

HS Rong, AS Liu, R Nicolaescu, M Paniccia, O Cohen, and D Hak; “Raman gain and nonlinear optical absorption measurements in a low-loss silicon waveguide,” Appl. Phys. Lett. 85, 2196–2198 (2004).
[Crossref]

Nicolaescu, R.

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “A continuous-wave Raman Silicon Laser,” Nature 433, 425–427 (2005).
[Crossref]

Ojha, J.J.

M. Robillard, P.E. Jessop, D.M. Bruce, S. Janz, R.L. Williams, S. Mailhot, H. Lafontaine, S.J. Kovacic, and J.J. Ojha; “Strain-induced birefringence in Si1-xGex optical waveguides,” J. Vac. Sci. Technol. B 16, 1773–1776 (1998).
[Crossref]

Osgood, R. M.

R. L. Espinola, J. I. Dadap, R. M. Osgood, S. J. McNab, and Y. A. Vlasov, “Raman amplification in ultra small silicon-on-insulator wire waveguides,” Opt. Express12, 3713–3718 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-16-3713
[Crossref] [PubMed]

Paniccia, M

HS Rong, AS Liu, R Nicolaescu, M Paniccia, O Cohen, and D Hak; “Raman gain and nonlinear optical absorption measurements in a low-loss silicon waveguide,” Appl. Phys. Lett. 85, 2196–2198 (2004).
[Crossref]

Paniccia, M.

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “A continuous-wave Raman Silicon Laser,” Nature 433, 425–427 (2005).
[Crossref]

M. Paniccia, H.S. Rong, and A.S. Liu, “Net continuous wave optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering,” Opt. Express13, 519–525 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-2-519
[Crossref] [PubMed]

People, R.

R. People and J.C. Bean; “Calculation of critical layer thickness versus lattice mismatch for GexSi1-x/Si strained-layer heterostructures,” Appl. Phys. Lett. 47, 322–324 (1985).
[Crossref]

Picard, M.-J.

Pinczuk, A.

E. Anastassakis, A. Pinczuk, E. Burstein, F.H. Pollack, and M. Cardona; “Effect of static uniaxial stress on the Raman spectrum of silicon,” Sol. State Comm. 8, 133–138 (1970).
[Crossref]

Pollack, F.H.

E. Anastassakis, A. Pinczuk, E. Burstein, F.H. Pollack, and M. Cardona; “Effect of static uniaxial stress on the Raman spectrum of silicon,” Sol. State Comm. 8, 133–138 (1970).
[Crossref]

Raghunathan, V.

V. Raghunathan, R. Claps, D. Dimitropoulos, and B. Jalali, “Wavelength conversion in Silicon using Raman induced four-wave mixing,” Appl. Phys. Lett. 85, 34–36 (2004).
[Crossref]

R. Claps, V. Raghunathan, D. Dimitropoulos, and B. Jalali, “Anti-Stokes Raman conversion in silicon waveguides,” Opt. Express11, 2862–2872 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-22-2862
[Crossref] [PubMed]

V. Raghunathan, O. Boyraz, and B. Jalali, “20 dB on-off Raman amplification in Silicon waveguides,” Proceedings of CLEO, Baltimore (2005).

R. Claps, D. Dimitropoulos, V. Raghunathan, Y. Han, and B. Jalali, “Observation of stimulated Raman amplification in silicon waveguides,” Opt. Express11, 1731–1739 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-15-1731
[Crossref] [PubMed]

Robillard, M.

M. Robillard, P.E. Jessop, D.M. Bruce, S. Janz, R.L. Williams, S. Mailhot, H. Lafontaine, S.J. Kovacic, and J.J. Ojha; “Strain-induced birefringence in Si1-xGex optical waveguides,” J. Vac. Sci. Technol. B 16, 1773–1776 (1998).
[Crossref]

Rong, H.

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “A continuous-wave Raman Silicon Laser,” Nature 433, 425–427 (2005).
[Crossref]

Rong, H.S.

M. Paniccia, H.S. Rong, and A.S. Liu, “Net continuous wave optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering,” Opt. Express13, 519–525 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-2-519
[Crossref] [PubMed]

Rong, HS

HS Rong, AS Liu, R Nicolaescu, M Paniccia, O Cohen, and D Hak; “Raman gain and nonlinear optical absorption measurements in a low-loss silicon waveguide,” Appl. Phys. Lett. 85, 2196–2198 (2004).
[Crossref]

Rowell, J.M.

R. A. Logan, J.M. Rowell, and F.A. Trumbore; “Phonon Spectra of Ge-Si Alloys,” Phys. Rev. 136, A 1751–A 1755 (1964).
[Crossref]

Sazaki, G.

K. Kutsukake, N. Usami, T. Ujihara, K. Fujiwara, G. Sazaki, and K. Nakajima; “On the origin of strain fluctuation in strained-Si grown on SiGe-on-insulator and SiGe virtual substrates,” Appl. Phys. Lett. 85, 1335–1337 (2004).
[Crossref]

Schaffler, F.

F. Schaffler, “Properties of Advanced Semiconductor Materials GaN, AlN, InN, BN, SiC, SiGe,” pp. 149–188, Eds. M.E. Levinshtein, S.L. Rumyantsev, and M.S. Shur, John Wiley & Sons, Inc., New York (2001).

Shin, H.K.

H.K. Shin, D.J. Lockwood, and J.-M Baribeau; “Strain in coherent-wave SiGe/Si superlattices,” Solid State Comm. 114, 505–510 (2000).
[Crossref]

Trumbore, F.A.

R. A. Logan, J.M. Rowell, and F.A. Trumbore; “Phonon Spectra of Ge-Si Alloys,” Phys. Rev. 136, A 1751–A 1755 (1964).
[Crossref]

Tsang, HK

TK Liang and HK Tsang; “Efficient Raman amplification in silicon-on-insulator waveguides,” Appl. Phys. Lett. 85, 3343–3345 (2004).
[Crossref]

Tsang, J.C.

J.C. Tsang, P.M. Mooney, F. Dacol, and J.O. Chou, “Measurements of alloy composition and strain in thin GexSi1-x layers,” J. of Appl. Phys. 75, 8098–8108 (1994).
[Crossref]

Ujihara, T.

K. Kutsukake, N. Usami, T. Ujihara, K. Fujiwara, G. Sazaki, and K. Nakajima; “On the origin of strain fluctuation in strained-Si grown on SiGe-on-insulator and SiGe virtual substrates,” Appl. Phys. Lett. 85, 1335–1337 (2004).
[Crossref]

Usami, N.

K. Kutsukake, N. Usami, T. Ujihara, K. Fujiwara, G. Sazaki, and K. Nakajima; “On the origin of strain fluctuation in strained-Si grown on SiGe-on-insulator and SiGe virtual substrates,” Appl. Phys. Lett. 85, 1335–1337 (2004).
[Crossref]

Vlasov, Y. A.

R. L. Espinola, J. I. Dadap, R. M. Osgood, S. J. McNab, and Y. A. Vlasov, “Raman amplification in ultra small silicon-on-insulator wire waveguides,” Opt. Express12, 3713–3718 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-16-3713
[Crossref] [PubMed]

Williams, R.L.

M. Robillard, P.E. Jessop, D.M. Bruce, S. Janz, R.L. Williams, S. Mailhot, H. Lafontaine, S.J. Kovacic, and J.J. Ojha; “Strain-induced birefringence in Si1-xGex optical waveguides,” J. Vac. Sci. Technol. B 16, 1773–1776 (1998).
[Crossref]

Winer, K.

M.I. Alonso and K. Winer; “Raman spectra of c-Si1-xGex alloys,” Phys. Rev. B 39, 10056–10062 (1989).
[Crossref]

Xu, D.-X

Xu, Q.

Q. Xu, V. R. Almeida, and M. Lipson, “Time-resolved study of Raman gain in highly confined silicon-on-insulator waveguides,” Opt. Express12, 4437–4442 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-19-4437
[Crossref] [PubMed]

Ye, W.N.

Appl. Phys. Lett. (5)

TK Liang and HK Tsang; “Efficient Raman amplification in silicon-on-insulator waveguides,” Appl. Phys. Lett. 85, 3343–3345 (2004).
[Crossref]

V. Raghunathan, R. Claps, D. Dimitropoulos, and B. Jalali, “Wavelength conversion in Silicon using Raman induced four-wave mixing,” Appl. Phys. Lett. 85, 34–36 (2004).
[Crossref]

HS Rong, AS Liu, R Nicolaescu, M Paniccia, O Cohen, and D Hak; “Raman gain and nonlinear optical absorption measurements in a low-loss silicon waveguide,” Appl. Phys. Lett. 85, 2196–2198 (2004).
[Crossref]

R. People and J.C. Bean; “Calculation of critical layer thickness versus lattice mismatch for GexSi1-x/Si strained-layer heterostructures,” Appl. Phys. Lett. 47, 322–324 (1985).
[Crossref]

K. Kutsukake, N. Usami, T. Ujihara, K. Fujiwara, G. Sazaki, and K. Nakajima; “On the origin of strain fluctuation in strained-Si grown on SiGe-on-insulator and SiGe virtual substrates,” Appl. Phys. Lett. 85, 1335–1337 (2004).
[Crossref]

J. of Appl. Phys. (1)

J.C. Tsang, P.M. Mooney, F. Dacol, and J.O. Chou, “Measurements of alloy composition and strain in thin GexSi1-x layers,” J. of Appl. Phys. 75, 8098–8108 (1994).
[Crossref]

J. Vac. Sci. Technol. B (1)

M. Robillard, P.E. Jessop, D.M. Bruce, S. Janz, R.L. Williams, S. Mailhot, H. Lafontaine, S.J. Kovacic, and J.J. Ojha; “Strain-induced birefringence in Si1-xGex optical waveguides,” J. Vac. Sci. Technol. B 16, 1773–1776 (1998).
[Crossref]

Nature (1)

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “A continuous-wave Raman Silicon Laser,” Nature 433, 425–427 (2005).
[Crossref]

Opt. Lett. (1)

Phys. Rev B (1)

M.W.C. Dharma-wardana, G.C. Aers, D. J. Lockwood, and J.M. Baribeau, “Interpretation of Raman Spectra of Ge/Si ultrathin superlattices,” Phys. Rev B 41, 5319 (1990).
[Crossref]

Phys. Rev. (1)

R. A. Logan, J.M. Rowell, and F.A. Trumbore; “Phonon Spectra of Ge-Si Alloys,” Phys. Rev. 136, A 1751–A 1755 (1964).
[Crossref]

Phys. Rev. B (2)

M.I. Alonso and K. Winer; “Raman spectra of c-Si1-xGex alloys,” Phys. Rev. B 39, 10056–10062 (1989).
[Crossref]

F. Cerdeira, C.J. Buchenauer, F. H. Pollack, and M. Cardona; “Stress-Induced Shifts of First-Order Raman Frequencies of Diamond- and Zinc-Blende-Type Semiconductors,” Phys. Rev. B 5, 580–593 (1972).
[Crossref]

Sol. State Comm. (1)

E. Anastassakis, A. Pinczuk, E. Burstein, F.H. Pollack, and M. Cardona; “Effect of static uniaxial stress on the Raman spectrum of silicon,” Sol. State Comm. 8, 133–138 (1970).
[Crossref]

Solid State Comm. (1)

H.K. Shin, D.J. Lockwood, and J.-M Baribeau; “Strain in coherent-wave SiGe/Si superlattices,” Solid State Comm. 114, 505–510 (2000).
[Crossref]

Other (11)

F. Schaffler, “Properties of Advanced Semiconductor Materials GaN, AlN, InN, BN, SiC, SiGe,” pp. 149–188, Eds. M.E. Levinshtein, S.L. Rumyantsev, and M.S. Shur, John Wiley & Sons, Inc., New York (2001).

W. Byra, “Raman Scattering in Ge-Si alloys,” Solid State Comm.12, 253 (1973).

G.P. Agrawal, “Nonlinear fiber optics,” Academic Press (1995)

R. Claps, V. Raghunathan, D. Dimitropoulos, and B. Jalali, “Anti-Stokes Raman conversion in silicon waveguides,” Opt. Express11, 2862–2872 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-22-2862
[Crossref] [PubMed]

M. Paniccia, H.S. Rong, and A.S. Liu, “Net continuous wave optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering,” Opt. Express13, 519–525 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-2-519
[Crossref] [PubMed]

R. L. Espinola, J. I. Dadap, R. M. Osgood, S. J. McNab, and Y. A. Vlasov, “Raman amplification in ultra small silicon-on-insulator wire waveguides,” Opt. Express12, 3713–3718 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-16-3713
[Crossref] [PubMed]

Q. Xu, V. R. Almeida, and M. Lipson, “Time-resolved study of Raman gain in highly confined silicon-on-insulator waveguides,” Opt. Express12, 4437–4442 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-19-4437
[Crossref] [PubMed]

V. Raghunathan, O. Boyraz, and B. Jalali, “20 dB on-off Raman amplification in Silicon waveguides,” Proceedings of CLEO, Baltimore (2005).

O. Boyraz and B. Jalali, “Demonstration of a silicon Raman laser,” Opt. Express12, 5269–5273 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-21-5269
[Crossref] [PubMed]

R. Claps, D. Dimitropoulos, Y. Han, and B. Jalali, “Observation of Raman emission in silicon waveguides at 1.54 µm,” Opt. Express10, 1305–1313 (2002). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-22-1305
[PubMed]

R. Claps, D. Dimitropoulos, V. Raghunathan, Y. Han, and B. Jalali, “Observation of stimulated Raman amplification in silicon waveguides,” Opt. Express11, 1731–1739 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-15-1731
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Spontaneous Raman spectrum from a SiGe waveguide, compared to that of a Silicon waveguide.

Fig. 2.
Fig. 2.

Time domain trace of the maximum Raman amplification obtained with the SiGe alloy waveguide, using a pulsed pump scheme.

Fig. 3.
Fig. 3.

Gain curve as a function of average pump power in the pulsed pump experiment.

Fig. 4.
Fig. 4.

The signal laser line for the wavelength at which maximum Raman amplification is observed. Two cases are shown: a pure SOI waveguide, and an SGOI waveguide.

Fig. 5.
Fig. 5.

Free-Carrier lifetime measurements. The cw signal laser has been de-tuned from the Raman resonance of the pulsed pump laser, and a net TPA loss is observed. The slow decay of the FCA effect is clear, and has been fitted to an exponential decay with a lifetime of τ=9 ns.

Fig. 6.
Fig. 6.

Variation of the average output Stokes power versus input pump power, for the SiGe laser.

Fig. 7.
Fig. 7.

Critical layer thickness for SiGe alloy as a function of the Ge concentration. After [16].

Fig. 8.
Fig. 8.

The spatial profile of the optical mode is shown (red curve) along with the Ge content spatial profile as obtained by a SIMS technique (blue curve)

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

ω S i ( cm 1 ) = 520.1 65 x
ω S i ( cm 1 ) = 520.2 + Δ · Σ
Ω s Ω d = τ 2 ω 0 ( p q ) ( s 11 s 12 ) .
τ = e 1 ( s 11 + s 12 ) = 0.529 GPa ,

Metrics