Abstract

The performance of 40-Gb/s RZ signals through cascaded thin-film filters is investigated by both numerical and analytical means. It is observed that the filtering effects can reduce the eye closure penalties caused by the large dispersion slope of the thin-film filters. In addition, the performance can be further improved by proper frequency detuning between the signal and the center of the filter. The combined effects of dispersion slope and filtering on 40-Gb/s signals are investigated analytically and explained for typical bit patterns.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. Robert B. Sargent, �??Recent advances in thin film filters,�?? in Proc. Optical Fiber Communication Conference (Optical Society of America, Los Angeles, CA, 2004), paper TUD6.
  2. G. Lenz, B. J. Eggleton, C. R. Giles, C. K. Madsen, and R. E, Slusher, �??Dispersive properties of optical filters for WDM systems,�?? IEEE J. Quantum Electron. 34, 1390-1402 (1998).
    [CrossRef]
  3. Ioannis Zacharopoulos, Anna Tzanakaki, D. Parcharidou, and I. Tomkos, �??Improved filter concatenation tolerance using duobinary modulation format for metropolitan area networks,�?? in IEEE-LEOS Annu. Meeting (IEEE Lasers and Electro-Optics Society, Tucson, Arizona, 2003), paper WY2, pp. 680-681.
  4. Mark Kuznetsov, Nan M. Froberg, Scott R. Henion, and Kristin A. Rauschenbach, �??Power penalty for optical signals due to dispersion slope in WDM filter cascades,�?? IEEE Photon. Technol. Lett. 11, 1411-1413 (1999).
    [CrossRef]
  5. G. Lens and L.E. Adams, �??Dispersion and crosstalk of optical minimum phase filters in wavelength division multiplexed systems,�?? in Proc. Optical Fiber Communication Conference/ International Conference on Integrated Optics and Optical Fiber Communication (Optical Society of America, San Diego, Calf., 1999), paper WJ5, pp. 168 -170.
  6. Ioannis Tomkos, June-Koo Rhee, Pakir Iydroose, Robert Hesse, Aleksandra Boskovic, and Rich Vodhanel, �??Filter concatenation penalties for 10-Gb/s chirped transmitters suitable for WDM metropolitan area networks,�?? IEEE Photon. Technol. Lett. 14, 564-566 (2002).
    [CrossRef]
  7. John D. Downie, Frank Annunziata and Jason Hurley, �??Fixed low-channel-count optical ADD-DROP multiplexer filter concatenation experiments with 50-GHz channel spacing and 10-Gbit/s NRZ signals,�?? J. Opt. Netw. 3, 204-213, (2004), <a href="http://www.osa-jon.org/abstract.cfm?URI=JON-3-4-204.">http://www.osa-jon.org/abstract.cfm?URI=JON-3-4-204.</a>
    [CrossRef]
  8. Mark Jablonski, Yuichi Takushima and Kazuro Kikuchi, �??The realization of all-pass filters for third-order dispersion compensation in ultrafast optical fiber transmission systems,�?? IEEE J. Lightwave Technol. 19, 1194-1205 (2001).
    [CrossRef]
  9. João L. Rebola and Adolfo V. T. Cartaxo, �??Power penalty assessment in optically preamplified receivers with arbitrary optical filtering and signal-dependent noise dominance,�?? J. Lightwave Technol. 20, 401-408 (2002).
    [CrossRef]
  10. T. Tokle, C. Peucheret, P. Jeppesen, �??Advanced modulation formats in 40 Gb/s optical communication systems with 80km fibre spans,�?? Opt. Commun. 225, 79-87 (2003).
    [CrossRef]
  11. Govind P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic Press, 1995), Chap. 3.
  12. Mitsunobu Miyagi and Shigeo Nishida, �??Pulse spreading in a single-mode fiber due to third-order dispersion,�?? Appl. Opt. 18, 678-682 (1979).
    [CrossRef] [PubMed]
  13. Eric W. Weisstein, �??Airy Functions,�?? From MathWorld--A Wolfram Web Resource, <a href="http://mathworld.wolfram.com/AiryFunctions.html">http://mathworld.wolfram.com/AiryFunctions.html</a>
  14. Xing Wei and Juerg Leuthold, "Relation between Vestigial-Sideband Filtering and pi/2 Progresive Phase-shift, "Opt. Lett. 29, 1599-1601 (2004)
    [CrossRef] [PubMed]

Appl. Opt. (1)

IEEE J. Lightwave Technol. (1)

Mark Jablonski, Yuichi Takushima and Kazuro Kikuchi, �??The realization of all-pass filters for third-order dispersion compensation in ultrafast optical fiber transmission systems,�?? IEEE J. Lightwave Technol. 19, 1194-1205 (2001).
[CrossRef]

IEEE J. Quantum Electron. (1)

G. Lenz, B. J. Eggleton, C. R. Giles, C. K. Madsen, and R. E, Slusher, �??Dispersive properties of optical filters for WDM systems,�?? IEEE J. Quantum Electron. 34, 1390-1402 (1998).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

Mark Kuznetsov, Nan M. Froberg, Scott R. Henion, and Kristin A. Rauschenbach, �??Power penalty for optical signals due to dispersion slope in WDM filter cascades,�?? IEEE Photon. Technol. Lett. 11, 1411-1413 (1999).
[CrossRef]

Ioannis Tomkos, June-Koo Rhee, Pakir Iydroose, Robert Hesse, Aleksandra Boskovic, and Rich Vodhanel, �??Filter concatenation penalties for 10-Gb/s chirped transmitters suitable for WDM metropolitan area networks,�?? IEEE Photon. Technol. Lett. 14, 564-566 (2002).
[CrossRef]

IEEE-LEOS Annu. Meeting (1)

Ioannis Zacharopoulos, Anna Tzanakaki, D. Parcharidou, and I. Tomkos, �??Improved filter concatenation tolerance using duobinary modulation format for metropolitan area networks,�?? in IEEE-LEOS Annu. Meeting (IEEE Lasers and Electro-Optics Society, Tucson, Arizona, 2003), paper WY2, pp. 680-681.

J. Lightwave Technol. (1)

J. Opt. Netw. (1)

Opt. Commun. (1)

T. Tokle, C. Peucheret, P. Jeppesen, �??Advanced modulation formats in 40 Gb/s optical communication systems with 80km fibre spans,�?? Opt. Commun. 225, 79-87 (2003).
[CrossRef]

Opt. Lett. (1)

Optical Fiber Communication Conference (1)

Robert B. Sargent, �??Recent advances in thin film filters,�?? in Proc. Optical Fiber Communication Conference (Optical Society of America, Los Angeles, CA, 2004), paper TUD6.

Optical Fiber Communication Conference/ (1)

G. Lens and L.E. Adams, �??Dispersion and crosstalk of optical minimum phase filters in wavelength division multiplexed systems,�?? in Proc. Optical Fiber Communication Conference/ International Conference on Integrated Optics and Optical Fiber Communication (Optical Society of America, San Diego, Calf., 1999), paper WJ5, pp. 168 -170.

Other (2)

Govind P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic Press, 1995), Chap. 3.

Eric W. Weisstein, �??Airy Functions,�?? From MathWorld--A Wolfram Web Resource, <a href="http://mathworld.wolfram.com/AiryFunctions.html">http://mathworld.wolfram.com/AiryFunctions.html</a>

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) Measured transmission and dispersion characteristics of the TFF, and (b) Spectra and eye diagram of RZ signals.

Fig. 2.
Fig. 2.

(a) ECPs caused by both dispersion characteristics and passband shape of the TFFs, and (b) ECPs caused by dispersion characteristics of the TFFs only.

Fig. 3.
Fig. 3.

Behavior of the Airy function Ai(z) with real independent variable.

Fig. 4.
Fig. 4.

Normalized total filed of two consecutive optical pulses subject to (a) DS of 875 ps/nm2, and (b) DS of 875 ps/nm2 and 7 cascaded Gaussian filters. T represents the bit period.

Fig. 5.
Fig. 5.

Normalized amplitudes and phases of optical pulses subject to a dispersion slope of 875ps/nm2 and 7 cascaded Gaussian filters (a) without detune, and (b) with 10-GHz detune.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

E ( t ) = A 0 exp [ t 2 ( 2 τ 2 ) i ( ω 0 + 2 π Δ f ) t ]
R 1 ( ω ) = exp [ ( ω ω 0 ) 2 ( 2 σ 2 ) ]
R 2 ( ω ) = exp [ i φ ( ω ) ] = exp [ i 2 π 2 c 2 D S ( ω ω 0 ) 3 3 ω 0 4 ]
E ( t ) = 2 π A 0 τ 2 π exp ( i ω 0 t ) × exp [ B ( ω ω 0 ) 2 ] exp [ i A ( ω ω 0 ) 3 3 ]
× exp [ 2 π Δ f ( ω ω 0 ) τ 2 2 π 2 Δ f 2 τ 2 ] exp [ i ( ω ω 0 ) t ] d ω
A = 2 π 2 c 2 D S ω 0 4 , and B = ( τ 2 + 1 σ 2 ) 2
E ( t ) = 2 π A 0 τ A 3 exp [ i ω 0 t B A t + 2 B 3 3 A 2 i B 2 π Δ f τ 2 A 2 π 2 Δ f 2 τ 2 ]
× 1 2 π exp [ i ω 1 3 3 + i A 3 ( B 2 A i 2 π Δ f τ 2 t ) ω 1 ] d ω 1
= 2 π A 0 τ A 3 exp [ i ω 0 t i B 2 π Δ f τ 2 A ] exp [ B A t + 2 B 3 3 A 2 2 π 2 Δ f 2 τ 2 ]
× A i ( B 2 At i A 2 π Δ f τ 2 A A 3 )
E ( t ) = 2 π A 0 τ A 3 × exp ( i ω 0 t ) exp ( Bt A + 2 B 3 3 A 2 ) × Ai ( ( B 2 At ) A A 3 )

Metrics