Abstract

Simultaneous stimulated Raman scattering (SRS) and second harmonic generation (SHG) are demonstrated in periodically poled lithium niobate (PPLN). Using a simple single-pass geometry, conversion efficiencies of up to 12% and 19% were observed for the SRS and SHG processes respectively. By changing the PPLN period interacting with the photonic crystal fibre based pump source and varying the PPLN temperature, the SHG signal was measured to be tunable from λ=584 nm to λ=679 nm. The SRS output spectrum was measured at λ=1583 nm, with a spectral full-width at half-maximum of λ=85 nm.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. L.E. Myers and W.R. Bosenberg, �??Periodically poled lithium niobate and quasi-phase-matched optical parametric oscillators,�?? IEEE J. Quantum Electron. 33 1663-1672 (1997).
    [CrossRef]
  2. D.W. Chen and K. Masters, �??Continuous-wave 4.3-mu m intracavity difference frequency generation in an optical parametric oscillator,�?? Opt. Lett. 26 25-27 (2001).
    [CrossRef]
  3. W.R. Bosenberg, J.I. Alexander, L.E. Myers and R.W. Wallace, �??2.5-W, continuous-wave, 629-nm solidstate laser source,�?? Opt. Lett. 23 207-209 (1998).
    [CrossRef]
  4. M.M. Fejer, G.A. Magel, D.H. Jundt and R.L. Byer, �??Quasi-phase-matched 2nd harmonic-generation �?? Tuning and tolerances,�?? IEEE J. Quantum Electron. 28 2631-2654 (1992).
    [CrossRef]
  5. I. Shoji, T. Kondo, A. Kitamoto, M. Shirane and R. Ito, �??Absolute scale of second-order nonlinear-optical coefficients,�?? J. Opt. Soc. of Am. B. 14 2268-2294 (1997).
    [CrossRef]
  6. F. Laurell, �??Periodically poled materials for miniature light sources,�?? Opt. Mat. 11 235-244 (1999).
    [CrossRef]
  7. P.G. Zverev, T.T. Basiev and A.M. Prokhorov, �??Stimulated Raman scattering of laser radiation in Raman crystals,�?? Opt. Mat. 11 335-352 (1999).
    [CrossRef]
  8. V. Pasiskevicius, A. Fragemann, F. Laurell, R. Butkus, V. Smilgevicius and A. Piskarskas, �??Enhanced stimulated Raman scattering in optical parametric oscillators from periodically poled KTiOPO4,�?? App. Phys. Lett. 82 325-327 (2003).
    [CrossRef]
  9. I. Jovanovic, J.R. Schmidt and C.A. Ebbers, �??Optical parametric chirped-pulse amplification in periodically poled KTiOPO4 at 1053 nm,�?? App. Phys. Lett. 83 4125-412 (2003).
    [CrossRef]
  10. N.V. Sidorov, M.N. Palatnikov, K. Bormanis and A. Sternberg, �??Raman spectra and structural defects of lithium niobate crystals,�?? Ferroelectrics 285 685-694 (2003).
    [CrossRef]
  11. D.T. Reid DT, I.G. Cormack, W.J. Wadsworth, J.C. Knight, PSJ Russell, �??Soliton self-frequency shift effects in photonic crystal fibre,�?? J. Mod. Opt. 49 757-767 (2002).
    [CrossRef]
  12. I.A. Ghambaryan, R. Guo, R.K. Hovsepyan, A.R. Poghosyan, E.S. Vardanyan and V.G. Lazaryan, �??Periodically poled structures in lithium niobate crystals: Growth and photoelectric properties,�?? J. Optoelectron. Adv. Mat. 5 61-68 (2003).
  13. G.D. Boyd and D.A. Kleinman, �??Parametric interaction of focused Gaussian light beams,�?? J. App. Phys. 39 3597-3639 (1968).

App. Phys. Lett.

V. Pasiskevicius, A. Fragemann, F. Laurell, R. Butkus, V. Smilgevicius and A. Piskarskas, �??Enhanced stimulated Raman scattering in optical parametric oscillators from periodically poled KTiOPO4,�?? App. Phys. Lett. 82 325-327 (2003).
[CrossRef]

I. Jovanovic, J.R. Schmidt and C.A. Ebbers, �??Optical parametric chirped-pulse amplification in periodically poled KTiOPO4 at 1053 nm,�?? App. Phys. Lett. 83 4125-412 (2003).
[CrossRef]

Ferroelectrics

N.V. Sidorov, M.N. Palatnikov, K. Bormanis and A. Sternberg, �??Raman spectra and structural defects of lithium niobate crystals,�?? Ferroelectrics 285 685-694 (2003).
[CrossRef]

IEEE J. Quantum Electron.

M.M. Fejer, G.A. Magel, D.H. Jundt and R.L. Byer, �??Quasi-phase-matched 2nd harmonic-generation �?? Tuning and tolerances,�?? IEEE J. Quantum Electron. 28 2631-2654 (1992).
[CrossRef]

L.E. Myers and W.R. Bosenberg, �??Periodically poled lithium niobate and quasi-phase-matched optical parametric oscillators,�?? IEEE J. Quantum Electron. 33 1663-1672 (1997).
[CrossRef]

J. App. Phys.

G.D. Boyd and D.A. Kleinman, �??Parametric interaction of focused Gaussian light beams,�?? J. App. Phys. 39 3597-3639 (1968).

J. Mod. Opt.

D.T. Reid DT, I.G. Cormack, W.J. Wadsworth, J.C. Knight, PSJ Russell, �??Soliton self-frequency shift effects in photonic crystal fibre,�?? J. Mod. Opt. 49 757-767 (2002).
[CrossRef]

J. Opt. Soc. of Am. B.

I. Shoji, T. Kondo, A. Kitamoto, M. Shirane and R. Ito, �??Absolute scale of second-order nonlinear-optical coefficients,�?? J. Opt. Soc. of Am. B. 14 2268-2294 (1997).
[CrossRef]

J. Optoelectron. Adv. Mat.

I.A. Ghambaryan, R. Guo, R.K. Hovsepyan, A.R. Poghosyan, E.S. Vardanyan and V.G. Lazaryan, �??Periodically poled structures in lithium niobate crystals: Growth and photoelectric properties,�?? J. Optoelectron. Adv. Mat. 5 61-68 (2003).

Opt. Lett.

Opt. Mat.

F. Laurell, �??Periodically poled materials for miniature light sources,�?? Opt. Mat. 11 235-244 (1999).
[CrossRef]

P.G. Zverev, T.T. Basiev and A.M. Prokhorov, �??Stimulated Raman scattering of laser radiation in Raman crystals,�?? Opt. Mat. 11 335-352 (1999).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Experimental set-up. The output of a continuous wave mode-locked Nd3+:YLF laser was sent through a half-wave plate into photonic crystal fiber (PCF) using an aspheric lens (A) of focal length f=+8 mm. The fibre output was collimated using another aspheric lens (B) of focal length f=+4.5 mm. Using a spherical lens (C) of focal length f=+40mm, the soliton self-frequency shifted output and the residual pump light was focused into a 6.5 mm long PPLN crystal.

Fig. 2.
Fig. 2.

By rotating the half-wave plate prior to the PCF, a weak polarization dependence of the pump polarization on the SSFS power was observed, with a measured decrease in average power of up to 24%.

Fig. 3.
Fig. 3.

The SSFS optical spectrum transmitted by the PCF (±1 nm wavelength accuracy, linear scale). The pump laser is evident as a small peak at 1047 nm. The SSFS maximum was measured at 1258 nm.

Fig. 4.
Fig. 4.

Two-photon autocorrelation of the SSFS PCF output. The FWHM of the measured pulse was 220 fs. Assuming a sech2 pulse shape, this corresponded to a pulse width of approximately 140 fs.

Fig. 5.
Fig. 5.

The SHG spectra as measured at the PPLN output, where the PPLN crystal was held at a fixed temperature of 110 °C. The legend refers to the period length chosen to interact with the input SSFS radiation. The bandwidth of the SHG output varies from 2.8 nm to 4.2 nm.

Fig. 6.
Fig. 6.

The SRS spectrum resulting from pumping the PPLN with the SSFS source. The spectral peak was measured at λ=1583 nm, with a λ=85 nm FWHM.

Metrics