Abstract

Writing computer-generated holograms has been achieved by using near infrared femtosecond laser selective ablation of metal film deposited on glass substrate. The diffraction features with data reconstruction of fabricated computer-generated holograms were evaluated. Both transmission and reflection holograms can be fabricated in a single process. The process required no mask, no pre- or post-treatment of the substrate.

© 2005 Optical Society of America

Full Article  |  PDF Article
Related Articles
Excimer laser use for microetching computer-generated holographic structures

N. A. Vainos, S. Mailis, S. Pissadakis, L. Boutsikaris, P. J. M. Parmiter, P. Dainty, and T. J. Hall
Appl. Opt. 35(32) 6304-6319 (1996)

Etching and printing of diffractive optical microstructures by a femtosecond excimer laser

Sakellaris Mailis, Ioanna Zergioti, George Koundourakis, Aris Ikiades, Argyro Patentalaki, Pagona Papakonstantinou, Nikolaos A. Vainos, and Costas Fotakis
Appl. Opt. 38(11) 2301-2308 (1999)

Thermal embossing of mid-infrared diffractive optical elements by use of a self-processing photopolymer master

Manuel Ornelas-Rodriguez, Sergio Calixto, Yunlong Sheng, and Colette Turck
Appl. Opt. 41(22) 4590-4595 (2002)

References

  • View by:
  • |
  • |
  • |

  1. A. W. Lohmann and D. P. Paris, “Binary Fraunhofer holograms generated by computer,” Appl. Opt. 5, 1739–48 (1967).
    [Crossref]
  2. B. R. Brown and A. W. Lohmann, “Computer-generated binary holograms,” IBM J. Res. Develop. 13, 160–8 (1969).
    [Crossref]
  3. M. R. Feldman and C. C. Guest, “Computer generated holographic optical elements for optical interconnection of very large scale integrated circuits,” Appl. Opt. 26, 4377–84 (1987).
    [Crossref] [PubMed]
  4. W. H. Lee, “Binary computer-generated holograms,” Appl. Opt. 18, 3661–9 (1979).
    [Crossref] [PubMed]
  5. B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tuenermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys. A 63, 109–115 (1996)
    [Crossref]
  6. R. Haight, D. Hayden, P. Longo, T. Neary, and A Wagner, “Femtosecond laser mask repair system in manufacturing,” J Vac. Sci. & Technol. B 17, 3137–43 (1999).
    [Crossref]
  7. T. Bauer, F. Korte, J. Howorth, C. Momma, N. Rizvi, F. Saviot, and F. Salin, “Development of an industrial femtosecond laser micro-machining System,” Photonics West-LASE 2002. Jan. 19–25. San Jose, Calif. Available at http://www.exitech.co.uk/pdfFiles/Photonics_West_2002.pdf.
  8. I. Zergioti, S. Mailis, N. A. Vainos, P. Papakonstantinou, C. Kalpouzos, C. P. Grigoropoulos, and C. Fotakis, “Microdeposition of metal and oxide structures using ultrashort laser pulses,” Appl. Phys. A 66, 579–82 (1998).
    [Crossref]
  9. I. Zergioti, S. Mailis, N. A. Vainos, A. Ikiades, C. P. Grigoropoulos, and C. Fotakis, “Microprinting and microetching of diffractive structures using ultrashort laser pulses,” Appl. Surf. Sci. 138– 139, 82–6 (1999).
    [Crossref]
  10. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–47 (1969).

1999 (2)

R. Haight, D. Hayden, P. Longo, T. Neary, and A Wagner, “Femtosecond laser mask repair system in manufacturing,” J Vac. Sci. & Technol. B 17, 3137–43 (1999).
[Crossref]

I. Zergioti, S. Mailis, N. A. Vainos, A. Ikiades, C. P. Grigoropoulos, and C. Fotakis, “Microprinting and microetching of diffractive structures using ultrashort laser pulses,” Appl. Surf. Sci. 138– 139, 82–6 (1999).
[Crossref]

1998 (1)

I. Zergioti, S. Mailis, N. A. Vainos, P. Papakonstantinou, C. Kalpouzos, C. P. Grigoropoulos, and C. Fotakis, “Microdeposition of metal and oxide structures using ultrashort laser pulses,” Appl. Phys. A 66, 579–82 (1998).
[Crossref]

1996 (1)

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tuenermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys. A 63, 109–115 (1996)
[Crossref]

1987 (1)

1979 (1)

1969 (2)

B. R. Brown and A. W. Lohmann, “Computer-generated binary holograms,” IBM J. Res. Develop. 13, 160–8 (1969).
[Crossref]

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–47 (1969).

1967 (1)

Bauer, T.

T. Bauer, F. Korte, J. Howorth, C. Momma, N. Rizvi, F. Saviot, and F. Salin, “Development of an industrial femtosecond laser micro-machining System,” Photonics West-LASE 2002. Jan. 19–25. San Jose, Calif. Available at http://www.exitech.co.uk/pdfFiles/Photonics_West_2002.pdf.

Brown, B. R.

B. R. Brown and A. W. Lohmann, “Computer-generated binary holograms,” IBM J. Res. Develop. 13, 160–8 (1969).
[Crossref]

Chichkov, B. N.

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tuenermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys. A 63, 109–115 (1996)
[Crossref]

Feldman, M. R.

Fotakis, C.

I. Zergioti, S. Mailis, N. A. Vainos, A. Ikiades, C. P. Grigoropoulos, and C. Fotakis, “Microprinting and microetching of diffractive structures using ultrashort laser pulses,” Appl. Surf. Sci. 138– 139, 82–6 (1999).
[Crossref]

I. Zergioti, S. Mailis, N. A. Vainos, P. Papakonstantinou, C. Kalpouzos, C. P. Grigoropoulos, and C. Fotakis, “Microdeposition of metal and oxide structures using ultrashort laser pulses,” Appl. Phys. A 66, 579–82 (1998).
[Crossref]

Grigoropoulos, C. P.

I. Zergioti, S. Mailis, N. A. Vainos, A. Ikiades, C. P. Grigoropoulos, and C. Fotakis, “Microprinting and microetching of diffractive structures using ultrashort laser pulses,” Appl. Surf. Sci. 138– 139, 82–6 (1999).
[Crossref]

I. Zergioti, S. Mailis, N. A. Vainos, P. Papakonstantinou, C. Kalpouzos, C. P. Grigoropoulos, and C. Fotakis, “Microdeposition of metal and oxide structures using ultrashort laser pulses,” Appl. Phys. A 66, 579–82 (1998).
[Crossref]

Guest, C. C.

Haight, R.

R. Haight, D. Hayden, P. Longo, T. Neary, and A Wagner, “Femtosecond laser mask repair system in manufacturing,” J Vac. Sci. & Technol. B 17, 3137–43 (1999).
[Crossref]

Hayden, D.

R. Haight, D. Hayden, P. Longo, T. Neary, and A Wagner, “Femtosecond laser mask repair system in manufacturing,” J Vac. Sci. & Technol. B 17, 3137–43 (1999).
[Crossref]

Howorth, J.

T. Bauer, F. Korte, J. Howorth, C. Momma, N. Rizvi, F. Saviot, and F. Salin, “Development of an industrial femtosecond laser micro-machining System,” Photonics West-LASE 2002. Jan. 19–25. San Jose, Calif. Available at http://www.exitech.co.uk/pdfFiles/Photonics_West_2002.pdf.

Ikiades, A.

I. Zergioti, S. Mailis, N. A. Vainos, A. Ikiades, C. P. Grigoropoulos, and C. Fotakis, “Microprinting and microetching of diffractive structures using ultrashort laser pulses,” Appl. Surf. Sci. 138– 139, 82–6 (1999).
[Crossref]

Kalpouzos, C.

I. Zergioti, S. Mailis, N. A. Vainos, P. Papakonstantinou, C. Kalpouzos, C. P. Grigoropoulos, and C. Fotakis, “Microdeposition of metal and oxide structures using ultrashort laser pulses,” Appl. Phys. A 66, 579–82 (1998).
[Crossref]

Kogelnik, H.

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–47 (1969).

Korte, F.

T. Bauer, F. Korte, J. Howorth, C. Momma, N. Rizvi, F. Saviot, and F. Salin, “Development of an industrial femtosecond laser micro-machining System,” Photonics West-LASE 2002. Jan. 19–25. San Jose, Calif. Available at http://www.exitech.co.uk/pdfFiles/Photonics_West_2002.pdf.

Lee, W. H.

Lohmann, A. W.

B. R. Brown and A. W. Lohmann, “Computer-generated binary holograms,” IBM J. Res. Develop. 13, 160–8 (1969).
[Crossref]

A. W. Lohmann and D. P. Paris, “Binary Fraunhofer holograms generated by computer,” Appl. Opt. 5, 1739–48 (1967).
[Crossref]

Longo, P.

R. Haight, D. Hayden, P. Longo, T. Neary, and A Wagner, “Femtosecond laser mask repair system in manufacturing,” J Vac. Sci. & Technol. B 17, 3137–43 (1999).
[Crossref]

Mailis, S.

I. Zergioti, S. Mailis, N. A. Vainos, A. Ikiades, C. P. Grigoropoulos, and C. Fotakis, “Microprinting and microetching of diffractive structures using ultrashort laser pulses,” Appl. Surf. Sci. 138– 139, 82–6 (1999).
[Crossref]

I. Zergioti, S. Mailis, N. A. Vainos, P. Papakonstantinou, C. Kalpouzos, C. P. Grigoropoulos, and C. Fotakis, “Microdeposition of metal and oxide structures using ultrashort laser pulses,” Appl. Phys. A 66, 579–82 (1998).
[Crossref]

Momma, C.

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tuenermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys. A 63, 109–115 (1996)
[Crossref]

T. Bauer, F. Korte, J. Howorth, C. Momma, N. Rizvi, F. Saviot, and F. Salin, “Development of an industrial femtosecond laser micro-machining System,” Photonics West-LASE 2002. Jan. 19–25. San Jose, Calif. Available at http://www.exitech.co.uk/pdfFiles/Photonics_West_2002.pdf.

Neary, T.

R. Haight, D. Hayden, P. Longo, T. Neary, and A Wagner, “Femtosecond laser mask repair system in manufacturing,” J Vac. Sci. & Technol. B 17, 3137–43 (1999).
[Crossref]

Nolte, S.

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tuenermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys. A 63, 109–115 (1996)
[Crossref]

Papakonstantinou, P.

I. Zergioti, S. Mailis, N. A. Vainos, P. Papakonstantinou, C. Kalpouzos, C. P. Grigoropoulos, and C. Fotakis, “Microdeposition of metal and oxide structures using ultrashort laser pulses,” Appl. Phys. A 66, 579–82 (1998).
[Crossref]

Paris, D. P.

Rizvi, N.

T. Bauer, F. Korte, J. Howorth, C. Momma, N. Rizvi, F. Saviot, and F. Salin, “Development of an industrial femtosecond laser micro-machining System,” Photonics West-LASE 2002. Jan. 19–25. San Jose, Calif. Available at http://www.exitech.co.uk/pdfFiles/Photonics_West_2002.pdf.

Salin, F.

T. Bauer, F. Korte, J. Howorth, C. Momma, N. Rizvi, F. Saviot, and F. Salin, “Development of an industrial femtosecond laser micro-machining System,” Photonics West-LASE 2002. Jan. 19–25. San Jose, Calif. Available at http://www.exitech.co.uk/pdfFiles/Photonics_West_2002.pdf.

Saviot, F.

T. Bauer, F. Korte, J. Howorth, C. Momma, N. Rizvi, F. Saviot, and F. Salin, “Development of an industrial femtosecond laser micro-machining System,” Photonics West-LASE 2002. Jan. 19–25. San Jose, Calif. Available at http://www.exitech.co.uk/pdfFiles/Photonics_West_2002.pdf.

Tuenermann, A.

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tuenermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys. A 63, 109–115 (1996)
[Crossref]

Vainos, N. A.

I. Zergioti, S. Mailis, N. A. Vainos, A. Ikiades, C. P. Grigoropoulos, and C. Fotakis, “Microprinting and microetching of diffractive structures using ultrashort laser pulses,” Appl. Surf. Sci. 138– 139, 82–6 (1999).
[Crossref]

I. Zergioti, S. Mailis, N. A. Vainos, P. Papakonstantinou, C. Kalpouzos, C. P. Grigoropoulos, and C. Fotakis, “Microdeposition of metal and oxide structures using ultrashort laser pulses,” Appl. Phys. A 66, 579–82 (1998).
[Crossref]

von Alvensleben, F.

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tuenermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys. A 63, 109–115 (1996)
[Crossref]

Wagner, A

R. Haight, D. Hayden, P. Longo, T. Neary, and A Wagner, “Femtosecond laser mask repair system in manufacturing,” J Vac. Sci. & Technol. B 17, 3137–43 (1999).
[Crossref]

Zergioti, I.

I. Zergioti, S. Mailis, N. A. Vainos, A. Ikiades, C. P. Grigoropoulos, and C. Fotakis, “Microprinting and microetching of diffractive structures using ultrashort laser pulses,” Appl. Surf. Sci. 138– 139, 82–6 (1999).
[Crossref]

I. Zergioti, S. Mailis, N. A. Vainos, P. Papakonstantinou, C. Kalpouzos, C. P. Grigoropoulos, and C. Fotakis, “Microdeposition of metal and oxide structures using ultrashort laser pulses,” Appl. Phys. A 66, 579–82 (1998).
[Crossref]

Appl. Opt. (3)

Appl. Phys. A (2)

I. Zergioti, S. Mailis, N. A. Vainos, P. Papakonstantinou, C. Kalpouzos, C. P. Grigoropoulos, and C. Fotakis, “Microdeposition of metal and oxide structures using ultrashort laser pulses,” Appl. Phys. A 66, 579–82 (1998).
[Crossref]

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tuenermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys. A 63, 109–115 (1996)
[Crossref]

Appl. Surf. Sci. (1)

I. Zergioti, S. Mailis, N. A. Vainos, A. Ikiades, C. P. Grigoropoulos, and C. Fotakis, “Microprinting and microetching of diffractive structures using ultrashort laser pulses,” Appl. Surf. Sci. 138– 139, 82–6 (1999).
[Crossref]

Bell Syst. Tech. J. (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–47 (1969).

IBM J. Res. Develop. (1)

B. R. Brown and A. W. Lohmann, “Computer-generated binary holograms,” IBM J. Res. Develop. 13, 160–8 (1969).
[Crossref]

J Vac. Sci. & Technol. B (1)

R. Haight, D. Hayden, P. Longo, T. Neary, and A Wagner, “Femtosecond laser mask repair system in manufacturing,” J Vac. Sci. & Technol. B 17, 3137–43 (1999).
[Crossref]

Other (1)

T. Bauer, F. Korte, J. Howorth, C. Momma, N. Rizvi, F. Saviot, and F. Salin, “Development of an industrial femtosecond laser micro-machining System,” Photonics West-LASE 2002. Jan. 19–25. San Jose, Calif. Available at http://www.exitech.co.uk/pdfFiles/Photonics_West_2002.pdf.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

The hole structures on metal film deposited on glass substrate fabricated by femtosecond laser ablation with different power (a) 50 mW, (b) 30 mW and (c) 1 mW. The inset is the plot of diameter of ablative spots as a function of the laser power.

Fig. 2.
Fig. 2.

Optical and SEM images of a CGH fabricated by the femtosecond laser selective ablation of metal film deposited on glass substrate. (a) Optical image of the CGH; (b) SEM image of the CGH; (c) SEM image of magnified holographic dots in (b); (d) Back-scatter SEM image of magnified holographic dots in (b).

Fig. 3.
Fig. 3.

Diffraction patterns with reconstruction of the CGH shown in Fig. 2. (a) Transmitted pattern; (b) Reflected pattern; (c) The experimental scheme for the reconstruction of the CGH. The inset in (c) gives the diffraction efficiency of the CGH.

Metrics