Abstract

Index-guiding photonic crystal fibers with appropriate structural parameters support the fundamental and second order modes over a practically infinite wavelength range. The polarization principal axes and mode field patterns of the modes can be made stable by having different size air-holes along the orthogonal directions. The potential applications of such two-mode PCFs are discussed.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Anders Bjarklev, Jes Broeng, and Araceli Bjarklev, Photonic Crystal Fibres, (London: Kluwer Academic Press, 2003).
    [CrossRef]
  2. T.A. Birks, J.C. Knight, and P.St.J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22, 961–963 (1997).
    [CrossRef] [PubMed]
  3. www.crystalfiber.com and www.blazephotonics.com
  4. J.C. Knight, J. Arriaga, T.A. Birks, A. Ortigosa-Blanch, W. J. wadsworth, and P. St. J. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photon. Technol. Lett. 12, 807–809 (2000).
    [CrossRef]
  5. J. K. Ranka, R. S. Windeler, and A. J. Stenz, “Optical properties of high-delta air-silica microstructure optical fibers,” Opt. Lett. 25, 796–798 (2000).
    [CrossRef]
  6. K. Hansen, J. Folkenberg, A. Petersson, and A. Bjarklev, “Properties of nonlinear photonic crystal fibers for telecommunication applications,” OFC 2003, 694–696 (2003).
  7. T. Monro, D.J. Richardson, and P.J. Bennett, “Developing holey fibres for evanescent field devices,” Electron. Lett. 35, 1188–1189 (1999).
    [CrossRef]
  8. Y. L. Hoo, W. Jin, Chunzheng Shi, Hoi L. Ho, Dong N. Wang, and Shuang C. Ruan, “Design and Modeling of a Photonic Crystal Fiber Gas Sensor,” Appl. Opt. 42, 3509–3515 (2003).
    [CrossRef] [PubMed]
  9. W. Zhi, R. Guobin, L. Shuqin, L. Weijun, and S. Guo, “Compact supercell method based on opposite parity for Bragg fibers,” Opt. Express 11, 3542–3549 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-26-3542.
    [CrossRef] [PubMed]
  10. M. J. Steel and R. M. Osgood, “Polarization and dispersive properties of elliptical-hole photonic crystal fibers,”J. Lightwave Technol. 19, 495–503(2001).
    [CrossRef]
  11. H. Kubota, S. Kawanishi, S. Koyanagi, M. Tanaka, and S. Yamaguchi, “Absolutely single polarization photonic crystal fiber,” IEEE Photon. Technol. Lett. 16, 182–184 (2004).
    [CrossRef]
  12. B. T. Kuhlmey, “Modal cut-off in micro-structured optical fibres,” Opt. Lett. 27, 1684–1687 (2002).
    [CrossRef]
  13. N. A. Mortensen, J. R. Folkenberg, M. D. Nielsen, and K. P. Hansen, “Modal cutoff and the V-parameter in photonic crystal fiber,” Opt. Lett. 28, 1879–1881, (2003).
    [CrossRef] [PubMed]
  14. J. R. Folkenberg, N. A. Mortensen, K. P. Hansen, T. P. Hansen, H. R. Simonsen, and C. Jakobsen, “Experimental investigation of cut-off phenomena in nonlinear photonic crystal fibers,” Opt. Lett. 28, 1882–2884, (2003).
    [CrossRef] [PubMed]
  15. A. Ortigosa-Blanch, J.C. Knight, W.J. Wadsworth, J. Arriaga, B.J. Mangan, T.A. Birks, and P.St.J. Russell, “Highly biregringent photonic crystal fibers,” Opt. Lett. 25, 1325–1327 (2000).
    [CrossRef]
  16. K. Suzuki, H. Kubota, S. Kawanishi, M. Tanaka, and M. Fujita, “High-speed bi-directional polarization division multiplexed optical transmission in ultra low-loss (1.3dB/km) polarization-maintaining photonic crystal fiber,” Electron. Lett. 37, 1399–1401, (2001).
    [CrossRef]
  17. N. A. Mortensen, M. D. Nielsen, J. R. Folkenberg, K. P. Hansen, and J. Lǽgsgaard, “Small-core photonic crystal fibers with weakly disordered air-hole cladding,” J. Opt. A: Pure Appl.Opt. 6, 221–223, 2004.
    [CrossRef]
  18. B.Y. Kim, J.N. Blake, S.Y. Huang, and H.J. Shaw, “Use of highly elliptical core fibers for two-mode fiber devices,” Opt. Lett. 12, 729–731 (1987).
    [CrossRef] [PubMed]
  19. A. W. Snyder and X.-H. Zheng, “Optical fibers of arbitrary cross-sections,” J. Opt. Soc. Am. A 3, 600–609, 1986.
    [CrossRef]
  20. J. Ju, W. Jin, and M. S. Demokan, “Two-mode operation in highly birefringent photonic crystal fiber,” IEEE Photon. Technol. Lett. 16, 2471–2474 (2004).
    [CrossRef]
  21. M. Koshiba and K. Saitoh, “Polarization-dependent confinement losses in actual holey fibers,” IEEE Photon. Technol. Lett. 15, 691–693, 2003.
    [CrossRef]
  22. J. N. Blake, B. Y. Kim, and H. J. Shaw, “Fiber-optic modal coupler using periodic microbending,” Opt. Lett. 11, 177–179 (1986).
    [CrossRef] [PubMed]
  23. W. V. Sorin, B. Y. Kim, and H. J. Shaw, “Highly selective evanescent modal filter for two-mode optical fibers,” Opt. Lett. 11, 581–583 (1986).
    [CrossRef] [PubMed]
  24. B. Y. Kim, J. N. Blake, H. E. Engan, and H. J. Shaw, “All-fiber acousto-optic frequency shifter,” Opt. Lett. 11, 389–391 (1986).
    [CrossRef] [PubMed]
  25. A.M. Vengsarkar, W.C. Michie, L. Jankovic, B. Culshaw, and R.O. Claus, “Fiber-optic dual-temperature sensor for simultaneous measurement of strain and temperature,” J. Lightwave Technol. 12, 170–177 (1994).
    [CrossRef]
  26. S. H. Yun, I. K. Hwang, and B. Y. Kim, “All-fiber tunable and laser based on two-mode fiber,”, Opt. Lett. 21, 27–29 (1996).
    [CrossRef] [PubMed]
  27. H. S. Park, K. Y. Song, S. H. Yun, and B. Y. Kim, All-fiber wavelength-tunable acoustooptic switches based on intermodal coupling in fibers,” J. Lightwave Technol. 20, 1864–1868 (2002).
    [CrossRef]
  28. J.N. Blake, S.Y. Huang, B.Y. Kim, and H.J. Shaw, “Strain effects on highly elliptical core two-mode fibers,” Opt. Lett. 12, 732–734 (1987).
    [CrossRef] [PubMed]
  29. S.Y. Huang, J.N. Blake, and B.Y. Kim, “Perturbation effects on mode propagation in highly elliptical core two-mode fibers,” J. Lightwave Technol. 8, 23–33 (1990).
    [CrossRef]
  30. L. Provino, J. M. Dudley, H. Maillotte, N. Grossard, R. S. Windeler, and B. J. Eggleton, “Compact broadband continuum source based on microchip laser pumped microstructured fiber,” Electron. Lett. 37, 558–560, 2001.
    [CrossRef]
  31. S. Ramachandran, “Novel photonic devices in few mode fibers,” Proc. 3rd International Conference on Optical Communications and Networks, 73–76, 30 Nov.–1 Dec. 2004.
  32. M. D. Nielsen, G. Vienne, J. R. Folkenberg, and A. Bjarklev, “Investigation of microdeformation-induced attenuation spectra in a photonic crystal fiber,” Opt. Lett. 28, 236–238, 2003.
    [CrossRef] [PubMed]
  33. A. Diez, T. A. Birks, W. H. Reeves, B. J. Mangan, and P. St. J. Russell, “Excitation of cladding modes in photonic cruystal fibers by flexural acoustic waves,” Opt. Lett. 25, 1499–1501, 2000.
    [CrossRef]

2004 (3)

H. Kubota, S. Kawanishi, S. Koyanagi, M. Tanaka, and S. Yamaguchi, “Absolutely single polarization photonic crystal fiber,” IEEE Photon. Technol. Lett. 16, 182–184 (2004).
[CrossRef]

N. A. Mortensen, M. D. Nielsen, J. R. Folkenberg, K. P. Hansen, and J. Lǽgsgaard, “Small-core photonic crystal fibers with weakly disordered air-hole cladding,” J. Opt. A: Pure Appl.Opt. 6, 221–223, 2004.
[CrossRef]

J. Ju, W. Jin, and M. S. Demokan, “Two-mode operation in highly birefringent photonic crystal fiber,” IEEE Photon. Technol. Lett. 16, 2471–2474 (2004).
[CrossRef]

2003 (6)

2002 (2)

2001 (3)

M. J. Steel and R. M. Osgood, “Polarization and dispersive properties of elliptical-hole photonic crystal fibers,”J. Lightwave Technol. 19, 495–503(2001).
[CrossRef]

K. Suzuki, H. Kubota, S. Kawanishi, M. Tanaka, and M. Fujita, “High-speed bi-directional polarization division multiplexed optical transmission in ultra low-loss (1.3dB/km) polarization-maintaining photonic crystal fiber,” Electron. Lett. 37, 1399–1401, (2001).
[CrossRef]

L. Provino, J. M. Dudley, H. Maillotte, N. Grossard, R. S. Windeler, and B. J. Eggleton, “Compact broadband continuum source based on microchip laser pumped microstructured fiber,” Electron. Lett. 37, 558–560, 2001.
[CrossRef]

2000 (4)

1999 (1)

T. Monro, D.J. Richardson, and P.J. Bennett, “Developing holey fibres for evanescent field devices,” Electron. Lett. 35, 1188–1189 (1999).
[CrossRef]

1997 (1)

1996 (1)

1994 (1)

A.M. Vengsarkar, W.C. Michie, L. Jankovic, B. Culshaw, and R.O. Claus, “Fiber-optic dual-temperature sensor for simultaneous measurement of strain and temperature,” J. Lightwave Technol. 12, 170–177 (1994).
[CrossRef]

1990 (1)

S.Y. Huang, J.N. Blake, and B.Y. Kim, “Perturbation effects on mode propagation in highly elliptical core two-mode fibers,” J. Lightwave Technol. 8, 23–33 (1990).
[CrossRef]

1987 (2)

1986 (4)

Arriaga, J.

A. Ortigosa-Blanch, J.C. Knight, W.J. Wadsworth, J. Arriaga, B.J. Mangan, T.A. Birks, and P.St.J. Russell, “Highly biregringent photonic crystal fibers,” Opt. Lett. 25, 1325–1327 (2000).
[CrossRef]

J.C. Knight, J. Arriaga, T.A. Birks, A. Ortigosa-Blanch, W. J. wadsworth, and P. St. J. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photon. Technol. Lett. 12, 807–809 (2000).
[CrossRef]

Bennett, P.J.

T. Monro, D.J. Richardson, and P.J. Bennett, “Developing holey fibres for evanescent field devices,” Electron. Lett. 35, 1188–1189 (1999).
[CrossRef]

Birks, T. A.

Birks, T.A.

Bjarklev, A.

M. D. Nielsen, G. Vienne, J. R. Folkenberg, and A. Bjarklev, “Investigation of microdeformation-induced attenuation spectra in a photonic crystal fiber,” Opt. Lett. 28, 236–238, 2003.
[CrossRef] [PubMed]

K. Hansen, J. Folkenberg, A. Petersson, and A. Bjarklev, “Properties of nonlinear photonic crystal fibers for telecommunication applications,” OFC 2003, 694–696 (2003).

Bjarklev, Anders

Anders Bjarklev, Jes Broeng, and Araceli Bjarklev, Photonic Crystal Fibres, (London: Kluwer Academic Press, 2003).
[CrossRef]

Bjarklev, Araceli

Anders Bjarklev, Jes Broeng, and Araceli Bjarklev, Photonic Crystal Fibres, (London: Kluwer Academic Press, 2003).
[CrossRef]

Blake, J. N.

Blake, J.N.

Broeng, Jes

Anders Bjarklev, Jes Broeng, and Araceli Bjarklev, Photonic Crystal Fibres, (London: Kluwer Academic Press, 2003).
[CrossRef]

Claus, R.O.

A.M. Vengsarkar, W.C. Michie, L. Jankovic, B. Culshaw, and R.O. Claus, “Fiber-optic dual-temperature sensor for simultaneous measurement of strain and temperature,” J. Lightwave Technol. 12, 170–177 (1994).
[CrossRef]

Culshaw, B.

A.M. Vengsarkar, W.C. Michie, L. Jankovic, B. Culshaw, and R.O. Claus, “Fiber-optic dual-temperature sensor for simultaneous measurement of strain and temperature,” J. Lightwave Technol. 12, 170–177 (1994).
[CrossRef]

Demokan, M. S.

J. Ju, W. Jin, and M. S. Demokan, “Two-mode operation in highly birefringent photonic crystal fiber,” IEEE Photon. Technol. Lett. 16, 2471–2474 (2004).
[CrossRef]

Diez, A.

Dudley, J. M.

L. Provino, J. M. Dudley, H. Maillotte, N. Grossard, R. S. Windeler, and B. J. Eggleton, “Compact broadband continuum source based on microchip laser pumped microstructured fiber,” Electron. Lett. 37, 558–560, 2001.
[CrossRef]

Eggleton, B. J.

L. Provino, J. M. Dudley, H. Maillotte, N. Grossard, R. S. Windeler, and B. J. Eggleton, “Compact broadband continuum source based on microchip laser pumped microstructured fiber,” Electron. Lett. 37, 558–560, 2001.
[CrossRef]

Engan, H. E.

Folkenberg, J.

K. Hansen, J. Folkenberg, A. Petersson, and A. Bjarklev, “Properties of nonlinear photonic crystal fibers for telecommunication applications,” OFC 2003, 694–696 (2003).

Folkenberg, J. R.

Fujita, M.

K. Suzuki, H. Kubota, S. Kawanishi, M. Tanaka, and M. Fujita, “High-speed bi-directional polarization division multiplexed optical transmission in ultra low-loss (1.3dB/km) polarization-maintaining photonic crystal fiber,” Electron. Lett. 37, 1399–1401, (2001).
[CrossRef]

Grossard, N.

L. Provino, J. M. Dudley, H. Maillotte, N. Grossard, R. S. Windeler, and B. J. Eggleton, “Compact broadband continuum source based on microchip laser pumped microstructured fiber,” Electron. Lett. 37, 558–560, 2001.
[CrossRef]

Guo, S.

Guobin, R.

Hansen, K.

K. Hansen, J. Folkenberg, A. Petersson, and A. Bjarklev, “Properties of nonlinear photonic crystal fibers for telecommunication applications,” OFC 2003, 694–696 (2003).

Hansen, K. P.

Hansen, T. P.

Ho, Hoi L.

Hoo, Y. L.

Huang, S.Y.

Hwang, I. K.

Jakobsen, C.

Jankovic, L.

A.M. Vengsarkar, W.C. Michie, L. Jankovic, B. Culshaw, and R.O. Claus, “Fiber-optic dual-temperature sensor for simultaneous measurement of strain and temperature,” J. Lightwave Technol. 12, 170–177 (1994).
[CrossRef]

Jin, W.

J. Ju, W. Jin, and M. S. Demokan, “Two-mode operation in highly birefringent photonic crystal fiber,” IEEE Photon. Technol. Lett. 16, 2471–2474 (2004).
[CrossRef]

Y. L. Hoo, W. Jin, Chunzheng Shi, Hoi L. Ho, Dong N. Wang, and Shuang C. Ruan, “Design and Modeling of a Photonic Crystal Fiber Gas Sensor,” Appl. Opt. 42, 3509–3515 (2003).
[CrossRef] [PubMed]

Ju, J.

J. Ju, W. Jin, and M. S. Demokan, “Two-mode operation in highly birefringent photonic crystal fiber,” IEEE Photon. Technol. Lett. 16, 2471–2474 (2004).
[CrossRef]

Kawanishi, S.

H. Kubota, S. Kawanishi, S. Koyanagi, M. Tanaka, and S. Yamaguchi, “Absolutely single polarization photonic crystal fiber,” IEEE Photon. Technol. Lett. 16, 182–184 (2004).
[CrossRef]

K. Suzuki, H. Kubota, S. Kawanishi, M. Tanaka, and M. Fujita, “High-speed bi-directional polarization division multiplexed optical transmission in ultra low-loss (1.3dB/km) polarization-maintaining photonic crystal fiber,” Electron. Lett. 37, 1399–1401, (2001).
[CrossRef]

Kim, B. Y.

Kim, B.Y.

Knight, J.C.

Koshiba, M.

M. Koshiba and K. Saitoh, “Polarization-dependent confinement losses in actual holey fibers,” IEEE Photon. Technol. Lett. 15, 691–693, 2003.
[CrossRef]

Koyanagi, S.

H. Kubota, S. Kawanishi, S. Koyanagi, M. Tanaka, and S. Yamaguchi, “Absolutely single polarization photonic crystal fiber,” IEEE Photon. Technol. Lett. 16, 182–184 (2004).
[CrossRef]

Kubota, H.

H. Kubota, S. Kawanishi, S. Koyanagi, M. Tanaka, and S. Yamaguchi, “Absolutely single polarization photonic crystal fiber,” IEEE Photon. Technol. Lett. 16, 182–184 (2004).
[CrossRef]

K. Suzuki, H. Kubota, S. Kawanishi, M. Tanaka, and M. Fujita, “High-speed bi-directional polarization division multiplexed optical transmission in ultra low-loss (1.3dB/km) polarization-maintaining photonic crystal fiber,” Electron. Lett. 37, 1399–1401, (2001).
[CrossRef]

Kuhlmey, B. T.

L?gsgaard, J.

N. A. Mortensen, M. D. Nielsen, J. R. Folkenberg, K. P. Hansen, and J. Lǽgsgaard, “Small-core photonic crystal fibers with weakly disordered air-hole cladding,” J. Opt. A: Pure Appl.Opt. 6, 221–223, 2004.
[CrossRef]

Maillotte, H.

L. Provino, J. M. Dudley, H. Maillotte, N. Grossard, R. S. Windeler, and B. J. Eggleton, “Compact broadband continuum source based on microchip laser pumped microstructured fiber,” Electron. Lett. 37, 558–560, 2001.
[CrossRef]

Mangan, B. J.

Mangan, B.J.

Michie, W.C.

A.M. Vengsarkar, W.C. Michie, L. Jankovic, B. Culshaw, and R.O. Claus, “Fiber-optic dual-temperature sensor for simultaneous measurement of strain and temperature,” J. Lightwave Technol. 12, 170–177 (1994).
[CrossRef]

Monro, T.

T. Monro, D.J. Richardson, and P.J. Bennett, “Developing holey fibres for evanescent field devices,” Electron. Lett. 35, 1188–1189 (1999).
[CrossRef]

Mortensen, N. A.

Nielsen, M. D.

Ortigosa-Blanch, A.

J.C. Knight, J. Arriaga, T.A. Birks, A. Ortigosa-Blanch, W. J. wadsworth, and P. St. J. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photon. Technol. Lett. 12, 807–809 (2000).
[CrossRef]

A. Ortigosa-Blanch, J.C. Knight, W.J. Wadsworth, J. Arriaga, B.J. Mangan, T.A. Birks, and P.St.J. Russell, “Highly biregringent photonic crystal fibers,” Opt. Lett. 25, 1325–1327 (2000).
[CrossRef]

Osgood, R. M.

Park, H. S.

Petersson, A.

K. Hansen, J. Folkenberg, A. Petersson, and A. Bjarklev, “Properties of nonlinear photonic crystal fibers for telecommunication applications,” OFC 2003, 694–696 (2003).

Provino, L.

L. Provino, J. M. Dudley, H. Maillotte, N. Grossard, R. S. Windeler, and B. J. Eggleton, “Compact broadband continuum source based on microchip laser pumped microstructured fiber,” Electron. Lett. 37, 558–560, 2001.
[CrossRef]

Ramachandran, S.

S. Ramachandran, “Novel photonic devices in few mode fibers,” Proc. 3rd International Conference on Optical Communications and Networks, 73–76, 30 Nov.–1 Dec. 2004.

Ranka, J. K.

Reeves, W. H.

Richardson, D.J.

T. Monro, D.J. Richardson, and P.J. Bennett, “Developing holey fibres for evanescent field devices,” Electron. Lett. 35, 1188–1189 (1999).
[CrossRef]

Ruan, Shuang C.

Russell, P. St. J.

A. Diez, T. A. Birks, W. H. Reeves, B. J. Mangan, and P. St. J. Russell, “Excitation of cladding modes in photonic cruystal fibers by flexural acoustic waves,” Opt. Lett. 25, 1499–1501, 2000.
[CrossRef]

J.C. Knight, J. Arriaga, T.A. Birks, A. Ortigosa-Blanch, W. J. wadsworth, and P. St. J. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photon. Technol. Lett. 12, 807–809 (2000).
[CrossRef]

Russell, P.St.J.

Saitoh, K.

M. Koshiba and K. Saitoh, “Polarization-dependent confinement losses in actual holey fibers,” IEEE Photon. Technol. Lett. 15, 691–693, 2003.
[CrossRef]

Shaw, H. J.

Shaw, H.J.

Shi, Chunzheng

Shuqin, L.

Simonsen, H. R.

Snyder, A. W.

Song, K. Y.

Sorin, W. V.

Steel, M. J.

Stenz, A. J.

Suzuki, K.

K. Suzuki, H. Kubota, S. Kawanishi, M. Tanaka, and M. Fujita, “High-speed bi-directional polarization division multiplexed optical transmission in ultra low-loss (1.3dB/km) polarization-maintaining photonic crystal fiber,” Electron. Lett. 37, 1399–1401, (2001).
[CrossRef]

Tanaka, M.

H. Kubota, S. Kawanishi, S. Koyanagi, M. Tanaka, and S. Yamaguchi, “Absolutely single polarization photonic crystal fiber,” IEEE Photon. Technol. Lett. 16, 182–184 (2004).
[CrossRef]

K. Suzuki, H. Kubota, S. Kawanishi, M. Tanaka, and M. Fujita, “High-speed bi-directional polarization division multiplexed optical transmission in ultra low-loss (1.3dB/km) polarization-maintaining photonic crystal fiber,” Electron. Lett. 37, 1399–1401, (2001).
[CrossRef]

Vengsarkar, A.M.

A.M. Vengsarkar, W.C. Michie, L. Jankovic, B. Culshaw, and R.O. Claus, “Fiber-optic dual-temperature sensor for simultaneous measurement of strain and temperature,” J. Lightwave Technol. 12, 170–177 (1994).
[CrossRef]

Vienne, G.

wadsworth, W. J.

J.C. Knight, J. Arriaga, T.A. Birks, A. Ortigosa-Blanch, W. J. wadsworth, and P. St. J. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photon. Technol. Lett. 12, 807–809 (2000).
[CrossRef]

Wadsworth, W.J.

Wang, Dong N.

Weijun, L.

Windeler, R. S.

L. Provino, J. M. Dudley, H. Maillotte, N. Grossard, R. S. Windeler, and B. J. Eggleton, “Compact broadband continuum source based on microchip laser pumped microstructured fiber,” Electron. Lett. 37, 558–560, 2001.
[CrossRef]

J. K. Ranka, R. S. Windeler, and A. J. Stenz, “Optical properties of high-delta air-silica microstructure optical fibers,” Opt. Lett. 25, 796–798 (2000).
[CrossRef]

Yamaguchi, S.

H. Kubota, S. Kawanishi, S. Koyanagi, M. Tanaka, and S. Yamaguchi, “Absolutely single polarization photonic crystal fiber,” IEEE Photon. Technol. Lett. 16, 182–184 (2004).
[CrossRef]

Yun, S. H.

Zheng, X.-H.

Zhi, W.

Appl. Opt. (1)

Electron. Lett. (3)

L. Provino, J. M. Dudley, H. Maillotte, N. Grossard, R. S. Windeler, and B. J. Eggleton, “Compact broadband continuum source based on microchip laser pumped microstructured fiber,” Electron. Lett. 37, 558–560, 2001.
[CrossRef]

T. Monro, D.J. Richardson, and P.J. Bennett, “Developing holey fibres for evanescent field devices,” Electron. Lett. 35, 1188–1189 (1999).
[CrossRef]

K. Suzuki, H. Kubota, S. Kawanishi, M. Tanaka, and M. Fujita, “High-speed bi-directional polarization division multiplexed optical transmission in ultra low-loss (1.3dB/km) polarization-maintaining photonic crystal fiber,” Electron. Lett. 37, 1399–1401, (2001).
[CrossRef]

IEEE Photon. Technol. Lett. (4)

H. Kubota, S. Kawanishi, S. Koyanagi, M. Tanaka, and S. Yamaguchi, “Absolutely single polarization photonic crystal fiber,” IEEE Photon. Technol. Lett. 16, 182–184 (2004).
[CrossRef]

J.C. Knight, J. Arriaga, T.A. Birks, A. Ortigosa-Blanch, W. J. wadsworth, and P. St. J. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photon. Technol. Lett. 12, 807–809 (2000).
[CrossRef]

J. Ju, W. Jin, and M. S. Demokan, “Two-mode operation in highly birefringent photonic crystal fiber,” IEEE Photon. Technol. Lett. 16, 2471–2474 (2004).
[CrossRef]

M. Koshiba and K. Saitoh, “Polarization-dependent confinement losses in actual holey fibers,” IEEE Photon. Technol. Lett. 15, 691–693, 2003.
[CrossRef]

J. Lightwave Technol. (4)

A.M. Vengsarkar, W.C. Michie, L. Jankovic, B. Culshaw, and R.O. Claus, “Fiber-optic dual-temperature sensor for simultaneous measurement of strain and temperature,” J. Lightwave Technol. 12, 170–177 (1994).
[CrossRef]

S.Y. Huang, J.N. Blake, and B.Y. Kim, “Perturbation effects on mode propagation in highly elliptical core two-mode fibers,” J. Lightwave Technol. 8, 23–33 (1990).
[CrossRef]

M. J. Steel and R. M. Osgood, “Polarization and dispersive properties of elliptical-hole photonic crystal fibers,”J. Lightwave Technol. 19, 495–503(2001).
[CrossRef]

H. S. Park, K. Y. Song, S. H. Yun, and B. Y. Kim, All-fiber wavelength-tunable acoustooptic switches based on intermodal coupling in fibers,” J. Lightwave Technol. 20, 1864–1868 (2002).
[CrossRef]

J. Opt. A: Pure Appl.Opt. (1)

N. A. Mortensen, M. D. Nielsen, J. R. Folkenberg, K. P. Hansen, and J. Lǽgsgaard, “Small-core photonic crystal fibers with weakly disordered air-hole cladding,” J. Opt. A: Pure Appl.Opt. 6, 221–223, 2004.
[CrossRef]

J. Opt. Soc. Am. A (1)

Opt. Express (1)

Opt. Lett. (14)

J. K. Ranka, R. S. Windeler, and A. J. Stenz, “Optical properties of high-delta air-silica microstructure optical fibers,” Opt. Lett. 25, 796–798 (2000).
[CrossRef]

M. D. Nielsen, G. Vienne, J. R. Folkenberg, and A. Bjarklev, “Investigation of microdeformation-induced attenuation spectra in a photonic crystal fiber,” Opt. Lett. 28, 236–238, 2003.
[CrossRef] [PubMed]

N. A. Mortensen, J. R. Folkenberg, M. D. Nielsen, and K. P. Hansen, “Modal cutoff and the V-parameter in photonic crystal fiber,” Opt. Lett. 28, 1879–1881, (2003).
[CrossRef] [PubMed]

J. R. Folkenberg, N. A. Mortensen, K. P. Hansen, T. P. Hansen, H. R. Simonsen, and C. Jakobsen, “Experimental investigation of cut-off phenomena in nonlinear photonic crystal fibers,” Opt. Lett. 28, 1882–2884, (2003).
[CrossRef] [PubMed]

B. T. Kuhlmey, “Modal cut-off in micro-structured optical fibres,” Opt. Lett. 27, 1684–1687 (2002).
[CrossRef]

J. N. Blake, B. Y. Kim, and H. J. Shaw, “Fiber-optic modal coupler using periodic microbending,” Opt. Lett. 11, 177–179 (1986).
[CrossRef] [PubMed]

B. Y. Kim, J. N. Blake, H. E. Engan, and H. J. Shaw, “All-fiber acousto-optic frequency shifter,” Opt. Lett. 11, 389–391 (1986).
[CrossRef] [PubMed]

W. V. Sorin, B. Y. Kim, and H. J. Shaw, “Highly selective evanescent modal filter for two-mode optical fibers,” Opt. Lett. 11, 581–583 (1986).
[CrossRef] [PubMed]

B.Y. Kim, J.N. Blake, S.Y. Huang, and H.J. Shaw, “Use of highly elliptical core fibers for two-mode fiber devices,” Opt. Lett. 12, 729–731 (1987).
[CrossRef] [PubMed]

J.N. Blake, S.Y. Huang, B.Y. Kim, and H.J. Shaw, “Strain effects on highly elliptical core two-mode fibers,” Opt. Lett. 12, 732–734 (1987).
[CrossRef] [PubMed]

T.A. Birks, J.C. Knight, and P.St.J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22, 961–963 (1997).
[CrossRef] [PubMed]

S. H. Yun, I. K. Hwang, and B. Y. Kim, “All-fiber tunable and laser based on two-mode fiber,”, Opt. Lett. 21, 27–29 (1996).
[CrossRef] [PubMed]

A. Ortigosa-Blanch, J.C. Knight, W.J. Wadsworth, J. Arriaga, B.J. Mangan, T.A. Birks, and P.St.J. Russell, “Highly biregringent photonic crystal fibers,” Opt. Lett. 25, 1325–1327 (2000).
[CrossRef]

A. Diez, T. A. Birks, W. H. Reeves, B. J. Mangan, and P. St. J. Russell, “Excitation of cladding modes in photonic cruystal fibers by flexural acoustic waves,” Opt. Lett. 25, 1499–1501, 2000.
[CrossRef]

Other (4)

K. Hansen, J. Folkenberg, A. Petersson, and A. Bjarklev, “Properties of nonlinear photonic crystal fibers for telecommunication applications,” OFC 2003, 694–696 (2003).

Anders Bjarklev, Jes Broeng, and Araceli Bjarklev, Photonic Crystal Fibres, (London: Kluwer Academic Press, 2003).
[CrossRef]

www.crystalfiber.com and www.blazephotonics.com

S. Ramachandran, “Novel photonic devices in few mode fibers,” Proc. 3rd International Conference on Optical Communications and Networks, 73–76, 30 Nov.–1 Dec. 2004.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

(a) Cross-section of a PCF with triangular lattice; (b) Λ/λc-d/Λ plot showing the two-mode operation range.

Fig. 2.
Fig. 2.

Field patterns of (a) the two polarizations of the fundamental mode; (b) the four approximately degenerate second-order modes

Fig. 3.
Fig. 3.

Beat lengths between the fundamental mode and the four second-order modes as functions of wavelength.

Fig. 4.
Fig. 4.

Cross-section of a Hi-Bi PCF

Fig. 5.
Fig. 5.

mode field patterns of the fundamental LP01 and the second-order LP11(even) modes.

Fig. 6.
Fig. 6.

Mode indexes of the fundamental and the 2nd order modes as functions of wavelength

Fig. 7.
Fig. 7.

Confinement losses of the second-order LP11(even) and LP11(odd) modes as functions of wavelength. (a) Two types of PCFs with 6 rings of air-holes; the parameters of the fibers are respectively Λ=4.18µm, d/Λ=0.54, dbig/Λ=0.97 and Λ=6µm, d/Λ=0.54, dbig/Λ=0.98. (b) The two-mode fiber designed for operation from 0.6µm to 1.8µm with 10 rings of air-holes and with Λ=6µm, d/Λ=0.54, dbig/Λ=0.98.

Metrics