Abstract

The orientational photorefractive effect was observed in an organic-inorganic nanocomposite of nematic liquid crystal hybridized with montmorillonite clay. Both the self-diffraction and beam-coupling effects were evaluated in a two-wave-mixing experiment in conjunction with an externally applied dc field. The experimental results indicate that photoinduced generation was enhanced by the addition of smectite clay with adequate concentration. Physically, the drifting ion charges were trapped by clay layers and separated by interlayer cations, creating an internal, spatially modulated space-charge field, which led to nematic molecular orientation and, then, refractive-index modulation via the electro-optical response. The diffraction efficiency as well as the beam-coupling ratio of the phase gratings recorded in the cells of the nematic liquid crystal hybridized with montmorillonite clay was found to be two to three times higher than that in the pristine nematic cell.

© 2005 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
POLICRYPS-based electrically switchable Bragg reflector

Luciano De Sio, Nelson Tabiryan, and Timothy J. Bunning
Opt. Express 23(25) 32696-32702 (2015)

Optically switchable grating based on dye-doped ferroelectric liquid crystal with high efficiency

Jiyoon Kim, Jeng-Hun Suh, Bo-Yeon Lee, Se-Um Kim, and Sin-Doo Lee
Opt. Express 23(10) 12619-12627 (2015)

High-diffraction-efficiency holographic gratings in C60-doped nematics

Yong Zhang, Fengfeng Yao, Yanbo Pei, and Xiudong Sun
Appl. Opt. 48(33) 6506-6510 (2009)

References

  • View by:
  • |
  • |
  • |

  1. L. Solymar, D. J. Webb, and A. Grunnet-Jepsen, The Physics and Applications of Photorefractive Materials (Oxford University Press, Oxford, 1996).
  2. K. Sutter, J. Hulliger, and P. Günter, “Photorefractive effects observed in the organic crystal 2-cyclooctylamino-5-nitropyridine doped with 7,7,8,8-tetracyanoquinodimethane,” Solid State Commun. 74, 867–870 (1990).
    [Crossref]
  3. I. C. Khoo, H. Li, and Y. Liang, “Observation of orientational photorefractive effects in nematic liquid crystals,” Opt. Lett. 19, 1723–1725 (1994).
    [Crossref] [PubMed]
  4. H. Ono and N. Kawatsuki, “Orientational holographic grating observed in liquid crystals sandwiched with photoconductive polymer films,” Appl. Phys. Lett. 71, 1162–1164 (1997).
    [Crossref]
  5. P. Pagliusi and G. Cipparrone, “Surface-induced photorefractive-like effect in pure liquid crystals,” Appl. Phys. Lett. 80, 168–170 (2002).
    [Crossref]
  6. E. V. Rudenko and A. V. Sukhov, “Photoinduced electrical conductivity and photorefraction in a nematic liquid crystal,” JETP Lett. 59, 142–146 (1994).
  7. I. C. Khoo, B. D. Guenther, M. V. Wood, P. Chen, and M.-Y. Shih, “Coherent beam amplification with a photorefractive liquid crystal,” Opt. Lett. 22, 1229–1231 (1997).
    [Crossref] [PubMed]
  8. W. Lee and Y.-L. Wang, “Voltage-dependent orientational photorefractivity in a planar C60-doped nematic film,” J. Phys. D: Appl. Phys. 35, 850–853 (2002).
    [Crossref]
  9. W. Lee and S.-L. Yeh, “Optical amplification in nematics doped with carbon nanotubes,” Appl. Phys. Lett. 79, 4488–4490 (2001).
    [Crossref]
  10. G. P. Wiederrecht, “Photorefractive liquid crystals,” Annu. Rev. Mater. Res. 31, 139–169 (2001).
    [Crossref]
  11. H. Ono, T. Kawamura, N. M. Frias, K. Kitamura, N. Kawatsuki, and H. Norisada, “Measurement of photorefractive phase shift in mesogenic composites,” Appl. Phys. Lett. 75, 3632–3634 (1999).
    [Crossref]
  12. M. Kawasumi, N. Hasegawa, A. Usuki, and A. Okada, “Nematic liquid crystal/clay mineral composite,” Mater. Sci. Eng. C6, 135–143 (1998).
  13. R. A. Vaia, C. L. Dennis, L. V. Natarajan, V. P. Tondiglia, D. W. Tomlin, and T. J. Bunning, “One-step, micrometer-scale organization of nano- and mesoparticles using holographic photopolymerization: A generic technique,” Adv. Mater. 13, 1570–1574 (2001).
    [Crossref]
  14. C. Pizzey, S. Klein, E. Leach, J. S. V. Duijneveldt, and R. M. Richardson, “Suspensions of colloidal plates in a nematic liquid crystal: a small angle x-ray scattering study,” J. Phys.: Condens. Matter 16, 2479–2495 (2004).
    [Crossref]
  15. T.-.Y Tsai, C.-L. Hwang, and S.-Y. Lee, “A fresh approach of modified clays for polymer/clay nanocomposites,” in Proceeding of the Annual Technical Conference 2000, Vol. II, (Society of Plastics Engineers, Orlando, FL, 2000), pp. 2412–2415.
  16. W. Lee and C.-S. Chiu, “Observation of self-diffraction by gratings in nematic liquid crystals doped with carbon nanotubes,” Opt. Lett. 26, 521–523 (2001).
    [Crossref]
  17. R. W. Boyd, Nonlinear Optics (Academic Press, London, 1992).
  18. Y.-P. Huang, H.-Y. Chen, W. Lee, T.-Y. Tsai, and W.-K. Chin, “Transient behaviour of polarity-reversed current in a liquid-crystal-montmorillonite-clay device,” Nanotechnology 16, 590–594 (2005).
    [Crossref]

2005 (1)

Y.-P. Huang, H.-Y. Chen, W. Lee, T.-Y. Tsai, and W.-K. Chin, “Transient behaviour of polarity-reversed current in a liquid-crystal-montmorillonite-clay device,” Nanotechnology 16, 590–594 (2005).
[Crossref]

2004 (1)

C. Pizzey, S. Klein, E. Leach, J. S. V. Duijneveldt, and R. M. Richardson, “Suspensions of colloidal plates in a nematic liquid crystal: a small angle x-ray scattering study,” J. Phys.: Condens. Matter 16, 2479–2495 (2004).
[Crossref]

2002 (2)

P. Pagliusi and G. Cipparrone, “Surface-induced photorefractive-like effect in pure liquid crystals,” Appl. Phys. Lett. 80, 168–170 (2002).
[Crossref]

W. Lee and Y.-L. Wang, “Voltage-dependent orientational photorefractivity in a planar C60-doped nematic film,” J. Phys. D: Appl. Phys. 35, 850–853 (2002).
[Crossref]

2001 (4)

W. Lee and S.-L. Yeh, “Optical amplification in nematics doped with carbon nanotubes,” Appl. Phys. Lett. 79, 4488–4490 (2001).
[Crossref]

G. P. Wiederrecht, “Photorefractive liquid crystals,” Annu. Rev. Mater. Res. 31, 139–169 (2001).
[Crossref]

W. Lee and C.-S. Chiu, “Observation of self-diffraction by gratings in nematic liquid crystals doped with carbon nanotubes,” Opt. Lett. 26, 521–523 (2001).
[Crossref]

R. A. Vaia, C. L. Dennis, L. V. Natarajan, V. P. Tondiglia, D. W. Tomlin, and T. J. Bunning, “One-step, micrometer-scale organization of nano- and mesoparticles using holographic photopolymerization: A generic technique,” Adv. Mater. 13, 1570–1574 (2001).
[Crossref]

1999 (1)

H. Ono, T. Kawamura, N. M. Frias, K. Kitamura, N. Kawatsuki, and H. Norisada, “Measurement of photorefractive phase shift in mesogenic composites,” Appl. Phys. Lett. 75, 3632–3634 (1999).
[Crossref]

1998 (1)

M. Kawasumi, N. Hasegawa, A. Usuki, and A. Okada, “Nematic liquid crystal/clay mineral composite,” Mater. Sci. Eng. C6, 135–143 (1998).

1997 (2)

H. Ono and N. Kawatsuki, “Orientational holographic grating observed in liquid crystals sandwiched with photoconductive polymer films,” Appl. Phys. Lett. 71, 1162–1164 (1997).
[Crossref]

I. C. Khoo, B. D. Guenther, M. V. Wood, P. Chen, and M.-Y. Shih, “Coherent beam amplification with a photorefractive liquid crystal,” Opt. Lett. 22, 1229–1231 (1997).
[Crossref] [PubMed]

1994 (2)

E. V. Rudenko and A. V. Sukhov, “Photoinduced electrical conductivity and photorefraction in a nematic liquid crystal,” JETP Lett. 59, 142–146 (1994).

I. C. Khoo, H. Li, and Y. Liang, “Observation of orientational photorefractive effects in nematic liquid crystals,” Opt. Lett. 19, 1723–1725 (1994).
[Crossref] [PubMed]

1990 (1)

K. Sutter, J. Hulliger, and P. Günter, “Photorefractive effects observed in the organic crystal 2-cyclooctylamino-5-nitropyridine doped with 7,7,8,8-tetracyanoquinodimethane,” Solid State Commun. 74, 867–870 (1990).
[Crossref]

Boyd, R. W.

R. W. Boyd, Nonlinear Optics (Academic Press, London, 1992).

Bunning, T. J.

R. A. Vaia, C. L. Dennis, L. V. Natarajan, V. P. Tondiglia, D. W. Tomlin, and T. J. Bunning, “One-step, micrometer-scale organization of nano- and mesoparticles using holographic photopolymerization: A generic technique,” Adv. Mater. 13, 1570–1574 (2001).
[Crossref]

Chen, H.-Y.

Y.-P. Huang, H.-Y. Chen, W. Lee, T.-Y. Tsai, and W.-K. Chin, “Transient behaviour of polarity-reversed current in a liquid-crystal-montmorillonite-clay device,” Nanotechnology 16, 590–594 (2005).
[Crossref]

Chen, P.

Chin, W.-K.

Y.-P. Huang, H.-Y. Chen, W. Lee, T.-Y. Tsai, and W.-K. Chin, “Transient behaviour of polarity-reversed current in a liquid-crystal-montmorillonite-clay device,” Nanotechnology 16, 590–594 (2005).
[Crossref]

Chiu, C.-S.

Cipparrone, G.

P. Pagliusi and G. Cipparrone, “Surface-induced photorefractive-like effect in pure liquid crystals,” Appl. Phys. Lett. 80, 168–170 (2002).
[Crossref]

Dennis, C. L.

R. A. Vaia, C. L. Dennis, L. V. Natarajan, V. P. Tondiglia, D. W. Tomlin, and T. J. Bunning, “One-step, micrometer-scale organization of nano- and mesoparticles using holographic photopolymerization: A generic technique,” Adv. Mater. 13, 1570–1574 (2001).
[Crossref]

Duijneveldt, J. S. V.

C. Pizzey, S. Klein, E. Leach, J. S. V. Duijneveldt, and R. M. Richardson, “Suspensions of colloidal plates in a nematic liquid crystal: a small angle x-ray scattering study,” J. Phys.: Condens. Matter 16, 2479–2495 (2004).
[Crossref]

Frias, N. M.

H. Ono, T. Kawamura, N. M. Frias, K. Kitamura, N. Kawatsuki, and H. Norisada, “Measurement of photorefractive phase shift in mesogenic composites,” Appl. Phys. Lett. 75, 3632–3634 (1999).
[Crossref]

Grunnet-Jepsen, A.

L. Solymar, D. J. Webb, and A. Grunnet-Jepsen, The Physics and Applications of Photorefractive Materials (Oxford University Press, Oxford, 1996).

Guenther, B. D.

Günter, P.

K. Sutter, J. Hulliger, and P. Günter, “Photorefractive effects observed in the organic crystal 2-cyclooctylamino-5-nitropyridine doped with 7,7,8,8-tetracyanoquinodimethane,” Solid State Commun. 74, 867–870 (1990).
[Crossref]

Hasegawa, N.

M. Kawasumi, N. Hasegawa, A. Usuki, and A. Okada, “Nematic liquid crystal/clay mineral composite,” Mater. Sci. Eng. C6, 135–143 (1998).

Huang, Y.-P.

Y.-P. Huang, H.-Y. Chen, W. Lee, T.-Y. Tsai, and W.-K. Chin, “Transient behaviour of polarity-reversed current in a liquid-crystal-montmorillonite-clay device,” Nanotechnology 16, 590–594 (2005).
[Crossref]

Hulliger, J.

K. Sutter, J. Hulliger, and P. Günter, “Photorefractive effects observed in the organic crystal 2-cyclooctylamino-5-nitropyridine doped with 7,7,8,8-tetracyanoquinodimethane,” Solid State Commun. 74, 867–870 (1990).
[Crossref]

Hwang, C.-L.

T.-.Y Tsai, C.-L. Hwang, and S.-Y. Lee, “A fresh approach of modified clays for polymer/clay nanocomposites,” in Proceeding of the Annual Technical Conference 2000, Vol. II, (Society of Plastics Engineers, Orlando, FL, 2000), pp. 2412–2415.

Kawamura, T.

H. Ono, T. Kawamura, N. M. Frias, K. Kitamura, N. Kawatsuki, and H. Norisada, “Measurement of photorefractive phase shift in mesogenic composites,” Appl. Phys. Lett. 75, 3632–3634 (1999).
[Crossref]

Kawasumi, M.

M. Kawasumi, N. Hasegawa, A. Usuki, and A. Okada, “Nematic liquid crystal/clay mineral composite,” Mater. Sci. Eng. C6, 135–143 (1998).

Kawatsuki, N.

H. Ono, T. Kawamura, N. M. Frias, K. Kitamura, N. Kawatsuki, and H. Norisada, “Measurement of photorefractive phase shift in mesogenic composites,” Appl. Phys. Lett. 75, 3632–3634 (1999).
[Crossref]

H. Ono and N. Kawatsuki, “Orientational holographic grating observed in liquid crystals sandwiched with photoconductive polymer films,” Appl. Phys. Lett. 71, 1162–1164 (1997).
[Crossref]

Khoo, I. C.

Kitamura, K.

H. Ono, T. Kawamura, N. M. Frias, K. Kitamura, N. Kawatsuki, and H. Norisada, “Measurement of photorefractive phase shift in mesogenic composites,” Appl. Phys. Lett. 75, 3632–3634 (1999).
[Crossref]

Klein, S.

C. Pizzey, S. Klein, E. Leach, J. S. V. Duijneveldt, and R. M. Richardson, “Suspensions of colloidal plates in a nematic liquid crystal: a small angle x-ray scattering study,” J. Phys.: Condens. Matter 16, 2479–2495 (2004).
[Crossref]

Leach, E.

C. Pizzey, S. Klein, E. Leach, J. S. V. Duijneveldt, and R. M. Richardson, “Suspensions of colloidal plates in a nematic liquid crystal: a small angle x-ray scattering study,” J. Phys.: Condens. Matter 16, 2479–2495 (2004).
[Crossref]

Lee, S.-Y.

T.-.Y Tsai, C.-L. Hwang, and S.-Y. Lee, “A fresh approach of modified clays for polymer/clay nanocomposites,” in Proceeding of the Annual Technical Conference 2000, Vol. II, (Society of Plastics Engineers, Orlando, FL, 2000), pp. 2412–2415.

Lee, W.

Y.-P. Huang, H.-Y. Chen, W. Lee, T.-Y. Tsai, and W.-K. Chin, “Transient behaviour of polarity-reversed current in a liquid-crystal-montmorillonite-clay device,” Nanotechnology 16, 590–594 (2005).
[Crossref]

W. Lee and Y.-L. Wang, “Voltage-dependent orientational photorefractivity in a planar C60-doped nematic film,” J. Phys. D: Appl. Phys. 35, 850–853 (2002).
[Crossref]

W. Lee and S.-L. Yeh, “Optical amplification in nematics doped with carbon nanotubes,” Appl. Phys. Lett. 79, 4488–4490 (2001).
[Crossref]

W. Lee and C.-S. Chiu, “Observation of self-diffraction by gratings in nematic liquid crystals doped with carbon nanotubes,” Opt. Lett. 26, 521–523 (2001).
[Crossref]

Li, H.

Liang, Y.

Natarajan, L. V.

R. A. Vaia, C. L. Dennis, L. V. Natarajan, V. P. Tondiglia, D. W. Tomlin, and T. J. Bunning, “One-step, micrometer-scale organization of nano- and mesoparticles using holographic photopolymerization: A generic technique,” Adv. Mater. 13, 1570–1574 (2001).
[Crossref]

Norisada, H.

H. Ono, T. Kawamura, N. M. Frias, K. Kitamura, N. Kawatsuki, and H. Norisada, “Measurement of photorefractive phase shift in mesogenic composites,” Appl. Phys. Lett. 75, 3632–3634 (1999).
[Crossref]

Okada, A.

M. Kawasumi, N. Hasegawa, A. Usuki, and A. Okada, “Nematic liquid crystal/clay mineral composite,” Mater. Sci. Eng. C6, 135–143 (1998).

Ono, H.

H. Ono, T. Kawamura, N. M. Frias, K. Kitamura, N. Kawatsuki, and H. Norisada, “Measurement of photorefractive phase shift in mesogenic composites,” Appl. Phys. Lett. 75, 3632–3634 (1999).
[Crossref]

H. Ono and N. Kawatsuki, “Orientational holographic grating observed in liquid crystals sandwiched with photoconductive polymer films,” Appl. Phys. Lett. 71, 1162–1164 (1997).
[Crossref]

Pagliusi, P.

P. Pagliusi and G. Cipparrone, “Surface-induced photorefractive-like effect in pure liquid crystals,” Appl. Phys. Lett. 80, 168–170 (2002).
[Crossref]

Pizzey, C.

C. Pizzey, S. Klein, E. Leach, J. S. V. Duijneveldt, and R. M. Richardson, “Suspensions of colloidal plates in a nematic liquid crystal: a small angle x-ray scattering study,” J. Phys.: Condens. Matter 16, 2479–2495 (2004).
[Crossref]

Richardson, R. M.

C. Pizzey, S. Klein, E. Leach, J. S. V. Duijneveldt, and R. M. Richardson, “Suspensions of colloidal plates in a nematic liquid crystal: a small angle x-ray scattering study,” J. Phys.: Condens. Matter 16, 2479–2495 (2004).
[Crossref]

Rudenko, E. V.

E. V. Rudenko and A. V. Sukhov, “Photoinduced electrical conductivity and photorefraction in a nematic liquid crystal,” JETP Lett. 59, 142–146 (1994).

Shih, M.-Y.

Solymar, L.

L. Solymar, D. J. Webb, and A. Grunnet-Jepsen, The Physics and Applications of Photorefractive Materials (Oxford University Press, Oxford, 1996).

Sukhov, A. V.

E. V. Rudenko and A. V. Sukhov, “Photoinduced electrical conductivity and photorefraction in a nematic liquid crystal,” JETP Lett. 59, 142–146 (1994).

Sutter, K.

K. Sutter, J. Hulliger, and P. Günter, “Photorefractive effects observed in the organic crystal 2-cyclooctylamino-5-nitropyridine doped with 7,7,8,8-tetracyanoquinodimethane,” Solid State Commun. 74, 867–870 (1990).
[Crossref]

Tomlin, D. W.

R. A. Vaia, C. L. Dennis, L. V. Natarajan, V. P. Tondiglia, D. W. Tomlin, and T. J. Bunning, “One-step, micrometer-scale organization of nano- and mesoparticles using holographic photopolymerization: A generic technique,” Adv. Mater. 13, 1570–1574 (2001).
[Crossref]

Tondiglia, V. P.

R. A. Vaia, C. L. Dennis, L. V. Natarajan, V. P. Tondiglia, D. W. Tomlin, and T. J. Bunning, “One-step, micrometer-scale organization of nano- and mesoparticles using holographic photopolymerization: A generic technique,” Adv. Mater. 13, 1570–1574 (2001).
[Crossref]

Tsai, T.-.Y

T.-.Y Tsai, C.-L. Hwang, and S.-Y. Lee, “A fresh approach of modified clays for polymer/clay nanocomposites,” in Proceeding of the Annual Technical Conference 2000, Vol. II, (Society of Plastics Engineers, Orlando, FL, 2000), pp. 2412–2415.

Tsai, T.-Y.

Y.-P. Huang, H.-Y. Chen, W. Lee, T.-Y. Tsai, and W.-K. Chin, “Transient behaviour of polarity-reversed current in a liquid-crystal-montmorillonite-clay device,” Nanotechnology 16, 590–594 (2005).
[Crossref]

Usuki, A.

M. Kawasumi, N. Hasegawa, A. Usuki, and A. Okada, “Nematic liquid crystal/clay mineral composite,” Mater. Sci. Eng. C6, 135–143 (1998).

Vaia, R. A.

R. A. Vaia, C. L. Dennis, L. V. Natarajan, V. P. Tondiglia, D. W. Tomlin, and T. J. Bunning, “One-step, micrometer-scale organization of nano- and mesoparticles using holographic photopolymerization: A generic technique,” Adv. Mater. 13, 1570–1574 (2001).
[Crossref]

Wang, Y.-L.

W. Lee and Y.-L. Wang, “Voltage-dependent orientational photorefractivity in a planar C60-doped nematic film,” J. Phys. D: Appl. Phys. 35, 850–853 (2002).
[Crossref]

Webb, D. J.

L. Solymar, D. J. Webb, and A. Grunnet-Jepsen, The Physics and Applications of Photorefractive Materials (Oxford University Press, Oxford, 1996).

Wiederrecht, G. P.

G. P. Wiederrecht, “Photorefractive liquid crystals,” Annu. Rev. Mater. Res. 31, 139–169 (2001).
[Crossref]

Wood, M. V.

Yeh, S.-L.

W. Lee and S.-L. Yeh, “Optical amplification in nematics doped with carbon nanotubes,” Appl. Phys. Lett. 79, 4488–4490 (2001).
[Crossref]

Adv. Mater. (1)

R. A. Vaia, C. L. Dennis, L. V. Natarajan, V. P. Tondiglia, D. W. Tomlin, and T. J. Bunning, “One-step, micrometer-scale organization of nano- and mesoparticles using holographic photopolymerization: A generic technique,” Adv. Mater. 13, 1570–1574 (2001).
[Crossref]

Annu. Rev. Mater. Res. (1)

G. P. Wiederrecht, “Photorefractive liquid crystals,” Annu. Rev. Mater. Res. 31, 139–169 (2001).
[Crossref]

Appl. Phys. Lett. (4)

H. Ono, T. Kawamura, N. M. Frias, K. Kitamura, N. Kawatsuki, and H. Norisada, “Measurement of photorefractive phase shift in mesogenic composites,” Appl. Phys. Lett. 75, 3632–3634 (1999).
[Crossref]

W. Lee and S.-L. Yeh, “Optical amplification in nematics doped with carbon nanotubes,” Appl. Phys. Lett. 79, 4488–4490 (2001).
[Crossref]

H. Ono and N. Kawatsuki, “Orientational holographic grating observed in liquid crystals sandwiched with photoconductive polymer films,” Appl. Phys. Lett. 71, 1162–1164 (1997).
[Crossref]

P. Pagliusi and G. Cipparrone, “Surface-induced photorefractive-like effect in pure liquid crystals,” Appl. Phys. Lett. 80, 168–170 (2002).
[Crossref]

J. Phys. D: Appl. Phys. (1)

W. Lee and Y.-L. Wang, “Voltage-dependent orientational photorefractivity in a planar C60-doped nematic film,” J. Phys. D: Appl. Phys. 35, 850–853 (2002).
[Crossref]

J. Phys.: Condens. Matter (1)

C. Pizzey, S. Klein, E. Leach, J. S. V. Duijneveldt, and R. M. Richardson, “Suspensions of colloidal plates in a nematic liquid crystal: a small angle x-ray scattering study,” J. Phys.: Condens. Matter 16, 2479–2495 (2004).
[Crossref]

JETP Lett. (1)

E. V. Rudenko and A. V. Sukhov, “Photoinduced electrical conductivity and photorefraction in a nematic liquid crystal,” JETP Lett. 59, 142–146 (1994).

Mater. Sci. Eng. (1)

M. Kawasumi, N. Hasegawa, A. Usuki, and A. Okada, “Nematic liquid crystal/clay mineral composite,” Mater. Sci. Eng. C6, 135–143 (1998).

Nanotechnology (1)

Y.-P. Huang, H.-Y. Chen, W. Lee, T.-Y. Tsai, and W.-K. Chin, “Transient behaviour of polarity-reversed current in a liquid-crystal-montmorillonite-clay device,” Nanotechnology 16, 590–594 (2005).
[Crossref]

Opt. Lett. (3)

Solid State Commun. (1)

K. Sutter, J. Hulliger, and P. Günter, “Photorefractive effects observed in the organic crystal 2-cyclooctylamino-5-nitropyridine doped with 7,7,8,8-tetracyanoquinodimethane,” Solid State Commun. 74, 867–870 (1990).
[Crossref]

Other (3)

L. Solymar, D. J. Webb, and A. Grunnet-Jepsen, The Physics and Applications of Photorefractive Materials (Oxford University Press, Oxford, 1996).

R. W. Boyd, Nonlinear Optics (Academic Press, London, 1992).

T.-.Y Tsai, C.-L. Hwang, and S.-Y. Lee, “A fresh approach of modified clays for polymer/clay nanocomposites,” in Proceeding of the Annual Technical Conference 2000, Vol. II, (Society of Plastics Engineers, Orlando, FL, 2000), pp. 2412–2415.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

SEM images of montmorillonite clay. (a) Microscale clay particle formed from stacked lamellae and (b) clay particles, delaminated from microscale particles, with diameters smaller than 200 nm well-dispersed in the NLC phase.

Fig. 2.
Fig. 2.

Observed dependence of the first-order self-diffraction efficiency on the wave-mixing angle for an NLC hybridized with 1.0-wt% montmorillonite clay.

Fig. 3.
Fig. 3.

Self-diffraction pattern in the absence of one of the two incident beams.

Fig. 4.
Fig. 4.

Kinetics of diffraction efficiencies of doped and undoped E7.

Fig. 5.
Fig. 5.

Schematic illustration of PR grating formation in oriented NLC layers. (a) Charge generation, (b) charge transport and trapping, and (c) space-charge field and reorientation of LC.

Fig. 6.
Fig. 6.

Asymmetric energy exchange observed in (a) E7 and (b) E7 hybridized with 1-wt% clay.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

η = ( I 1 I 1 ) × 100 %
Q = 2 π L λ n Λ 2

Metrics