Abstract

We report on the refractive indices of Sn2P2S6 crystals in the wavelength range 550–2300 nm. The measurements are performed at room temperature using the minimum deviation method. The dispersion is described by a two oscillator model yielding the oscillator energies and strengths (Sellmeier parameters) for all polarization directions. The rotation of the indicatrix in the mirror plane and the direction of the optical axes have also been determined in the wavelength range λ=550-2200 nm.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. A. Anema, A. Grabar, and T. Rasing, �??The nonlinear optical properties of Sn2P2S6,�?? Ferroelectrics 183(1-4), 181�??3 (1996).
    [CrossRef]
  2. D. Haertle, G. Caimi, A. Haldi, G. Montemezzani, P. Günter, A. A. Grabar, I. M. Stoika, and Y. M. Vysochanskii, �??Electro-optical properties of Sn2P2S6,�?? Opt. Commun. 215(4-6), 333�??43 (2003).
    [CrossRef]
  3. S. G. Odoulov, A. N. Shumelyuk, U. Hellwig, R. A. Rupp, A. A. Grabar, and I. M. Stoyka, �??Photorefraction in tin hypothiodiphosphate in the near infrared,�?? J. Opt. Soc. Am. B 13(10), 2352�??60 (1996).
    [CrossRef]
  4. A. A. Grabar, I. V. Kedyk, M. I. Gurzan, I. M. Stoika, A. A. Molnar, and Y. M. Vysochanskii, �??Enhanced photorefractive properties of modified Sn2P2S6,�?? Opt. Commun. 188(1-4), 187�??94 (2001).
    [CrossRef]
  5. S. Maerten, N. Dubreuil, G. Pauliat, G. Roosen, D. Rytz, and T. Salva, �??Laser diode made single-mode by a self-adaptive photorefractive filter,�?? Opt. Commun. 208(1-3), 183�??9 (2002).
    [CrossRef]
  6. M. Jazbinsek, G. Montemezzani, P. Gunter, A. A. Grabar, I. M. Stoika, and Y. M. Vysochanskii, �??Fast nearinfrared self-pumped phase conjugation with photorefractive Sn2P2S6,�?? J. Opt. Soc. Am. B 20(6), 1241�??6 (2003).
    [CrossRef]
  7. M. I. Gurzan, A. P. Buturlakin, V. S. Gerasimenko, N. F. Korde, and V. Y. Slivka, �??Optical properties of Sn2P2S6 crystals,�?? Soviet Physics Solid State 19(10), 1794�??5 (1977).
  8. Y. M. Vysochanskii and V. Y. Slivka, Ferrolelectrics of Sn2P2S6 Family. Properties in Vicinity of Lifshitz Point (in Russian), p. 264 (Oriana-Nova, 1994).
  9. A. A. Grabar, Y. M. Vysochanskii, S. I. Perechinskii, L. A. Salo, M. I. Gurzan, and V. Y. Slivka, �??Thermooptic investigations of ferroelectric Sn2P2S6,�?? Soviet Physics Solid State 26(11), 2087�??9 (1984).
  10. C. D. Carpentier and R. Nitsche, �??Vapour growth and crystal data of the thio(seleno)-hypodiphosphates Sn2P2S6, Sn2P2Se6, Pb2P2S6, Pb2P2Se6 and their mixed crystals,�?? Materials Research Bulletin 9(4), 401�??10 (1974).
    [CrossRef]
  11. R. Nitsche and P. Wild, �??Crystal growth of metal-phosphorus-sulfur compounds by vapor transport,�?? Materials Research Bulletin 5(6), 419�??23 (1970).
    [CrossRef]
  12. G. Dittmar and H. Schäfer, �??Die Struktur des Di-Zinn-Hexathiohypo-diphosphats Sn2P2S6,�?? Zeitschrift fuer Naturforschung 29B(5-6), 312�??7 (1974).
  13. ANSI/IEEE Std 176 - IEEE Standard on Piezoelectricity, p. 242 (IEEE, Inc; 345 East 47th Street, New York, NY 10017, USA, 1987).
  14. E. Hecht, Optics, pp. 297�??299 (Addison-Wesley World Student Series Edition, Reading, UK, 1987).
  15. K. Kuepper, B. Schneider, V. Caciuc, M. Neumann, A. V. Postnikov, A. Ruediger, A. A. Grabar, and Y. M. Vysochanskii, �??Electronic structure of Sn2P2S6,�?? Physical Review B 67(11), 115,101�??1 (2003).
  16. A. A. Lavrentyev, B. V. Gabrelian, I. Y. Nikifororv, J. J. Rehr, and A. L. Ankudinov, �??Electronic structure and chemical bonding of phosphorus contained sulfides InPS4, Tl3PS4, and Sn2P2S6,�?? J. Phys. Chem. Solids 64(12), 2479�??2486 (2003).
    [CrossRef]
  17. S. H. Wemple and M. DiDomenico, Jr., Electrooptical and nonlinear optical properties of crystals, vol. 3, p. 264 (Academic Press, New York (R. Wolfe ed.), 1972).
  18. M. DiDomenico, Jr. and S. H. Wemple, �??Oxygen-octahedra ferroelectrics. I. theory of electro-optical and nonlinear optical effects,�?? J. Appl. Phys. 40(2), 720�??34 (1969).
    [CrossRef]
  19. B. K. Tanner, X-ray diffraction topography (Oxford a.o.: Pergamon Press, 1976).
  20. H. A. Haus, Waves and fields in optoelectronics, pp. 307�??309 (Prentice-Hall, Inc. Englewood Cliffs, NJ 07632, 1984).

Academic Press (R. Wolfe ed.), 1972).

S. H. Wemple and M. DiDomenico, Jr., Electrooptical and nonlinear optical properties of crystals, vol. 3, p. 264 (Academic Press, New York (R. Wolfe ed.), 1972).

Ferroelectrics

A. Anema, A. Grabar, and T. Rasing, �??The nonlinear optical properties of Sn2P2S6,�?? Ferroelectrics 183(1-4), 181�??3 (1996).
[CrossRef]

IEEE Standard on Piezoelectricity

ANSI/IEEE Std 176 - IEEE Standard on Piezoelectricity, p. 242 (IEEE, Inc; 345 East 47th Street, New York, NY 10017, USA, 1987).

J. Appl. Phys.

M. DiDomenico, Jr. and S. H. Wemple, �??Oxygen-octahedra ferroelectrics. I. theory of electro-optical and nonlinear optical effects,�?? J. Appl. Phys. 40(2), 720�??34 (1969).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. Chem. Solids

A. A. Lavrentyev, B. V. Gabrelian, I. Y. Nikifororv, J. J. Rehr, and A. L. Ankudinov, �??Electronic structure and chemical bonding of phosphorus contained sulfides InPS4, Tl3PS4, and Sn2P2S6,�?? J. Phys. Chem. Solids 64(12), 2479�??2486 (2003).
[CrossRef]

Materials Research Bulletin

C. D. Carpentier and R. Nitsche, �??Vapour growth and crystal data of the thio(seleno)-hypodiphosphates Sn2P2S6, Sn2P2Se6, Pb2P2S6, Pb2P2Se6 and their mixed crystals,�?? Materials Research Bulletin 9(4), 401�??10 (1974).
[CrossRef]

R. Nitsche and P. Wild, �??Crystal growth of metal-phosphorus-sulfur compounds by vapor transport,�?? Materials Research Bulletin 5(6), 419�??23 (1970).
[CrossRef]

Opt. Commun.

A. A. Grabar, I. V. Kedyk, M. I. Gurzan, I. M. Stoika, A. A. Molnar, and Y. M. Vysochanskii, �??Enhanced photorefractive properties of modified Sn2P2S6,�?? Opt. Commun. 188(1-4), 187�??94 (2001).
[CrossRef]

S. Maerten, N. Dubreuil, G. Pauliat, G. Roosen, D. Rytz, and T. Salva, �??Laser diode made single-mode by a self-adaptive photorefractive filter,�?? Opt. Commun. 208(1-3), 183�??9 (2002).
[CrossRef]

D. Haertle, G. Caimi, A. Haldi, G. Montemezzani, P. Günter, A. A. Grabar, I. M. Stoika, and Y. M. Vysochanskii, �??Electro-optical properties of Sn2P2S6,�?? Opt. Commun. 215(4-6), 333�??43 (2003).
[CrossRef]

Physical Review B

K. Kuepper, B. Schneider, V. Caciuc, M. Neumann, A. V. Postnikov, A. Ruediger, A. A. Grabar, and Y. M. Vysochanskii, �??Electronic structure of Sn2P2S6,�?? Physical Review B 67(11), 115,101�??1 (2003).

Soviet Physics Solid State

A. A. Grabar, Y. M. Vysochanskii, S. I. Perechinskii, L. A. Salo, M. I. Gurzan, and V. Y. Slivka, �??Thermooptic investigations of ferroelectric Sn2P2S6,�?? Soviet Physics Solid State 26(11), 2087�??9 (1984).

M. I. Gurzan, A. P. Buturlakin, V. S. Gerasimenko, N. F. Korde, and V. Y. Slivka, �??Optical properties of Sn2P2S6 crystals,�?? Soviet Physics Solid State 19(10), 1794�??5 (1977).

Zeitschrift fuer Naturforschung

G. Dittmar and H. Schäfer, �??Die Struktur des Di-Zinn-Hexathiohypo-diphosphats Sn2P2S6,�?? Zeitschrift fuer Naturforschung 29B(5-6), 312�??7 (1974).

Other

Y. M. Vysochanskii and V. Y. Slivka, Ferrolelectrics of Sn2P2S6 Family. Properties in Vicinity of Lifshitz Point (in Russian), p. 264 (Oriana-Nova, 1994).

E. Hecht, Optics, pp. 297�??299 (Addison-Wesley World Student Series Edition, Reading, UK, 1987).

B. K. Tanner, X-ray diffraction topography (Oxford a.o.: Pergamon Press, 1976).

H. A. Haus, Waves and fields in optoelectronics, pp. 307�??309 (Prentice-Hall, Inc. Englewood Cliffs, NJ 07632, 1984).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Position of the indicatrix and spontaneous polarization PS in the xz-plane at room temperature. This is the mirror plane, perpendicular to b and y. (a,b,c) is the crystallographic system (non-orthogonal for monocline crystals), (x, y, z) is the Cartesian coordinate system, and (x 1, x 2, x 3) is the dielectric coordinate system.

Fig. 2.
Fig. 2.

Measured rotation angle α of the major axis of the indicatrix to the x-axis (T=300K) Error:±0.4°. In the inset a comparison is shown with the less precise data calculated from the refractive indices (grey circles).

Fig. 3.
Fig. 3.

Angle 2V between the optical axes, calculated from the refractive indices given by Eq. (6) and the parameters in Table 3.

Fig. 4.
Fig. 4.

Principal refractive indices of Sn2P2S6 at T=295K in the wavelength range 550…2300nm. The point signs do not correspond to the error bars (Δn≈2·10-4) and for n 1 and n 3 (λ<1650nm) data points from two crystals are displayed. The continuous lines correspond to a two-oscillators Sellmeier model with the parameters given in Table 3.

Fig. 5.
Fig. 5.

Principal refractive indices of Sn2P2S6 at T=295K in the wavelength range 550…2300nm. The coordinate axes are choosen so that a one-oscillator Sellmeier model would appear as a straight line. The continuous lines are from Eq. (6) using the parameters shown in Table 3.

Fig. 6.
Fig. 6.

Schematic of an internal reflection for p-polarized light. The outgoing angle θ out is not equal to θ in if the indicatrix is rotated in the xz-plane. The energy propagation (Poynting) vector is not parallel to the wave vector k in the crystal, but follows it proximately in the case of this figure. In part b) the normal index surface (see text) is drawn. As in Fig. 1, α is the rotation angle of the major axis of the indicatrix from the +x-axis, and therefore the rotation angle of the major axis of the normal index surface from the +z-axis.

Fig. 7.
Fig. 7.

Calculation of the variation θ out-θ in versus the rotation of the indicatrix in the xz-plane for Sn2P2S6 (Fig. 6).

Tables (3)

Tables Icon

Table 1. Size and orientation of the prism samples. Sample 1 and 2 are cut from the same crystal. Both samples 1 and 3 permit to measure n 1 and n 3, while sample 2 permits to measure n 2 and nz .

Tables Icon

Table 2. Refractive indices of Sn2P2S6 at selected wavelengths (T=295K). The values of nx and nz are calculated using Eq. (5) and the measured values of n 1, n 3 and α.

Tables Icon

Table 3. Sellmeier coefficients for dispersion of the refractive index of Sn2P2S6 at T=295K. The given values are the fit parameters for calculating the refractive indices with (6), while the error is the one of the physical properties.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

α ( λ ) = α + α 1 λ 2 + α 2 λ 4
tan 2 V = 1 n max 2 1 n mid 2 1 n mid 2 1 n min 2 .
n = sin [ ( δ + φ ) 2 ] sin ( φ 2 )
Δ n = Δ n sys + Δ n stat
= n φ Δ φ + n ϕ z Δ ϕ z +
+ ( n δ Δ δ ) 2 + ( n T Δ T ) 2 + ( n φ F 1 Δ φ F 1 ) 2
< 2.3 · 10 4
n x = ( sin 2 α n 1 2 + cos 2 α n 3 2 ) 1 2
n y = n 2
n z = ( cos 2 α n 1 2 + sin 2 α n 3 2 ) 1 2
n 2 ( λ ) 1 = S 1 λ 1 2 1 ( λ 1 λ ) 2 + S 2 λ 2 2 1 ( λ 2 λ ) 2 ,

Metrics