Abstract

The thermal lens technique was carried out to experimentally determine the influence of the energy transfer upconversion (ETU) processes on fluorescence quantum efficiency (η) in Nd3+-doped materials. The samples with high Nd3+concentration present a considerable reduction in η with the increasing excitation power due to the efficient ETU processes. Besides, the energy migration was identified as the mechanism responsible for the upconversion losses. In addition, it was verified that the critical inversion density is not concentration independent, as previously stated, but it decreases with the Nd concentration. Our results point out the approach based on TL technique as a valuable alternative because of its sensitivity allowing the measurements to be performed in a pump power regime that avoids damages in the investigated material.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. S. A. Payne, G. D. Wilke, L. K. Smith, W. F. Krupke, �??Auger upconversion losses in Nd-doped laser glasses,�?? Opt. Commun. 111, 263-268 (1994).
    [CrossRef]
  2. J. L. Doualan, C. Maunier, D. Descamps, J. Landais, and R. Moncorgé, �??Excited-state absorption and upconversion losses in the Nd-doped glasses for high-power lasers,�?? Phys. Rev. B 62, 4459-4463 (2000); (and references therein).
    [CrossRef]
  3. V. Pilla, T. Catunda, H. P. Jenssen, A. Cassanho, �??Fluorescence quantum efficiency measurements in the presence of Auger upconversion by the thermal lens method,�?? Opt. Lett. 28, 239-241 (2003).
    [CrossRef] [PubMed]
  4. M. Pollnau, P. J. Hardman, M. A. Kern, W. A. Clarkson, and D. C. Hanna, �??Upconversion-induced heat generation and thermal lensing in Nd:YLF and Nd:YAG,�?? Phys. Rev. B 58, 16076-16092 (1998).
    [CrossRef]
  5. S. A. Payne, L. K. Smith, R. J. Beach, B. H. T. Chai, J. H. Tassano, L. D. DeLoach, W. L. Kway, R. W. Solarz, and W. F. Krupke, �??Properties of Cr:LiSrAlF6 crystals for laser operation,�?? Appl. Opt. 33, 5526-5536 (1994.)
    [CrossRef] [PubMed]
  6. S. Guy, C. L. Bonner, D. P. Shepherd, D.C. Hanna, A. C. Tropper, and B. Ferrand, �??High-inversion densities in Nd:YAG: Upconversion and Bleaching,�?? IEEE J. Quantum Electron. 34, 900-909 (1998).
    [CrossRef]
  7. Y. Guyot, H. Manaa, J. Y. Rivoire, R. Moncorgé, N. Garnier, E. Descroix, M. Bon, and P. Laporte, �??Excited-state-absorption and upconversion studies of Nd3+-doped single crystals Y3Al5O12, YLiF4, and LaMgAl11O19,�?? Phys. Rev. B 51, 784-798 (1995).
    [CrossRef]
  8. P. J. Hardman, W. A. Clarkson, G. J. Friel, M. Pollnau, and D. C. Hanna, �??Energy-transfer upconversion and thermal lensing in high-power end-pumped Nd:YLF laser crystals,�?? IEEE J. Quantum Electron. 35, 647-655 (1999).
    [CrossRef]
  9. J. L. Blows, T. Omatsu, J. Dawes, H. Pask, and M. Tateda, �??Heat generation in Nd:YVO4 with and without laser action,�?? IEEE Phot. Technol. Lett. 10, 1727-179 (1998).
    [CrossRef]
  10. M. Pollnau, D. R. Gamelin, S. R. Lüthi, H. U. Güdel, and M. P. Hehlen, �??Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,�?? Phys. Rev. B 61, 3337-3346 (2000).
    [CrossRef]
  11. D. C. Brown, �??Heat, fluorescence, and stimulated-emission power densities and fractions in Nd:YAG,�?? IEEE J. Quantum Electron. 34, 560-572 (1998).
    [CrossRef]
  12. S. M. Lima, A. A. Andrade, R. Lebullenger, A. C. Hernandes, T. Catunda, M. L. Baesso, �??Multiwavelength thermal lens determination of fluorescence quantum efficiency of solids: Application to Nd3+-doped fluoride glass,�?? Appl. Phys. Lett. 78(21), 3220-3222 (2001).
    [CrossRef]
  13. S. M. Lima, J. A. Sampaio, T. Catunda, A. C. Bento, C. M. Miranda, and M. L. Baesso, �??Mode-mismatched thermal lens spectrometry for thermo-optical properties measurement in optical glasses: a review,�?? J. Non-Cryst. Solids 273, 215-227 (2000).
    [CrossRef]
  14. M. L. Baesso, A. C. Bento, A. A. Andrade, J. A. Sampaio, , E. Pecoraro, L. A. O. Nunes, T. Catunda, and S. Gama, �??Absolute thermal lens method to determine fluorescence quantum efficiency and concentration quenching of solids,�?? Phys. Rev. B. 57, 10545-10549 (1998).
    [CrossRef]
  15. C. Jacinto, S. L. Oliveira, L. A. O. Nunes, J. D. Myers, M. J. Myers, and T. Catunda, �??Normalized lifetimes thermal lens method for determination of luminescence quantum efficiency and thermo-optical coefficients: Application to Nd3+-doped glasses,�?? (submitted).
  16. M. L. Baesso, J. Shen, and R. D. Snook, �??Mode-mismatched thermal lens determination of temperature coefficient of optical path length in soda lime glass at different wavelengths,�?? J. Appl. Phys. 75(8), 3732-3737 (1994).
    [CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

S. M. Lima, A. A. Andrade, R. Lebullenger, A. C. Hernandes, T. Catunda, M. L. Baesso, �??Multiwavelength thermal lens determination of fluorescence quantum efficiency of solids: Application to Nd3+-doped fluoride glass,�?? Appl. Phys. Lett. 78(21), 3220-3222 (2001).
[CrossRef]

IEEE J. Quantum Electron. (3)

D. C. Brown, �??Heat, fluorescence, and stimulated-emission power densities and fractions in Nd:YAG,�?? IEEE J. Quantum Electron. 34, 560-572 (1998).
[CrossRef]

S. Guy, C. L. Bonner, D. P. Shepherd, D.C. Hanna, A. C. Tropper, and B. Ferrand, �??High-inversion densities in Nd:YAG: Upconversion and Bleaching,�?? IEEE J. Quantum Electron. 34, 900-909 (1998).
[CrossRef]

P. J. Hardman, W. A. Clarkson, G. J. Friel, M. Pollnau, and D. C. Hanna, �??Energy-transfer upconversion and thermal lensing in high-power end-pumped Nd:YLF laser crystals,�?? IEEE J. Quantum Electron. 35, 647-655 (1999).
[CrossRef]

IEEE Phot. Technol. Lett. (1)

J. L. Blows, T. Omatsu, J. Dawes, H. Pask, and M. Tateda, �??Heat generation in Nd:YVO4 with and without laser action,�?? IEEE Phot. Technol. Lett. 10, 1727-179 (1998).
[CrossRef]

J. Appl. Phys. (1)

M. L. Baesso, J. Shen, and R. D. Snook, �??Mode-mismatched thermal lens determination of temperature coefficient of optical path length in soda lime glass at different wavelengths,�?? J. Appl. Phys. 75(8), 3732-3737 (1994).
[CrossRef]

J. Non-Cryst. Solids (1)

S. M. Lima, J. A. Sampaio, T. Catunda, A. C. Bento, C. M. Miranda, and M. L. Baesso, �??Mode-mismatched thermal lens spectrometry for thermo-optical properties measurement in optical glasses: a review,�?? J. Non-Cryst. Solids 273, 215-227 (2000).
[CrossRef]

Opt. Commun. (1)

S. A. Payne, G. D. Wilke, L. K. Smith, W. F. Krupke, �??Auger upconversion losses in Nd-doped laser glasses,�?? Opt. Commun. 111, 263-268 (1994).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. B (4)

M. Pollnau, P. J. Hardman, M. A. Kern, W. A. Clarkson, and D. C. Hanna, �??Upconversion-induced heat generation and thermal lensing in Nd:YLF and Nd:YAG,�?? Phys. Rev. B 58, 16076-16092 (1998).
[CrossRef]

J. L. Doualan, C. Maunier, D. Descamps, J. Landais, and R. Moncorgé, �??Excited-state absorption and upconversion losses in the Nd-doped glasses for high-power lasers,�?? Phys. Rev. B 62, 4459-4463 (2000); (and references therein).
[CrossRef]

M. Pollnau, D. R. Gamelin, S. R. Lüthi, H. U. Güdel, and M. P. Hehlen, �??Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,�?? Phys. Rev. B 61, 3337-3346 (2000).
[CrossRef]

Y. Guyot, H. Manaa, J. Y. Rivoire, R. Moncorgé, N. Garnier, E. Descroix, M. Bon, and P. Laporte, �??Excited-state-absorption and upconversion studies of Nd3+-doped single crystals Y3Al5O12, YLiF4, and LaMgAl11O19,�?? Phys. Rev. B 51, 784-798 (1995).
[CrossRef]

Phys. Rev. B. (1)

M. L. Baesso, A. C. Bento, A. A. Andrade, J. A. Sampaio, , E. Pecoraro, L. A. O. Nunes, T. Catunda, and S. Gama, �??Absolute thermal lens method to determine fluorescence quantum efficiency and concentration quenching of solids,�?? Phys. Rev. B. 57, 10545-10549 (1998).
[CrossRef]

Other (1)

C. Jacinto, S. L. Oliveira, L. A. O. Nunes, J. D. Myers, M. J. Myers, and T. Catunda, �??Normalized lifetimes thermal lens method for determination of luminescence quantum efficiency and thermo-optical coefficients: Application to Nd3+-doped glasses,�?? (submitted).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1.
Fig. 1.

(a) TL amplitude, θ; (b) θ normalized by the absorbed power, Θ and (c) η normalized by ηo , versus excitation parameter S=I/Is at λex=801.6 nm for phosphate Q-98 glasses doped with 1.1 (closed circles), 3.3 (closed squares), 6.7 (open circles), and 10.3 (open squares) x1020 ions/cm3 of Nd3+. The lines in (b) represent the theoretical fit of experimental data.

Fig. 2.
Fig. 2.

(a) Upconversion parameter (γ) and (b) inversion density (γτ)-1 for Phosphate (Q-98), Fluoroindate (PGIZCa), and Fluorozirconate (ZBLAN) glasses as a function of the Nd3+ concentration (Nt). The values for only one concentration are showed for YLF. The lines in (a) are linear fitting, and in (b) are only guides for eyes.

Tables (1)

Tables Icon

Table 1. β parameter for Phosphate (Q-98), Fluoroindate (PGIZCa), and Fluorozirconate (ZBLAN) glasses and Nd:YLF crystal. The τ and ηo values were gathered from refs. [12,13,15].

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

d N e d t = σ I h ν ex N g N e τ γ N e 2
η = η o 1 + β n e
φ = 1 η ν em ν ex ,
Θ = θ P abs = φ K λ p d s d T
Θ = C [ 1 ( η o 1 + β n e ) ν em ν ex ]
W up = W FD + W B = ( γ FD + γ B ) n e N t

Metrics