Abstract

The effect of beam spatial profile on self-focusing has been investigated. A circular aperture is used to create a Fresnel diffraction pattern. It is shown that self-focusing (a pre-requisite for filament formation) occurs in the presence of the aperture but that no formation is observed when the aperture is removed, even though the beam has higher power well above the threshold for critical power. An analytical solution to the Huygens-Fresnel diffraction integral shows that the axial intensity oscillates between maxima and minima as the distance from the aperture increases and that filament formation coincides with the presence of an axial maximum.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. R. Alfano and S. L. Shapiro, “Emission in the region 4000 to 7000 Å via four-photon coupling in glass,” Phys. Rev. Lett. 24, 584–587 (1970).
    [CrossRef]
  2. M. Wittmann and A. Penzkofer, “Spectral broadening of femtosecond laser pulses,” Opt. Commun. 126, 308–317 (1996).
    [CrossRef]
  3. A. Gaeta, “Catastrophic collapse of ultrashort pulses,” Phys. Rev. Lett. 84, 3582–3585 (2000).
    [CrossRef] [PubMed]
  4. A. Brodeur and S. L. Chin, “Ultrafast white-light continuum generation and self-focsuing in condensed media,” J. Opt. Soc. Am. B. 16, 637–650 (1999).
    [CrossRef]
  5. A. Brodeur, F. A. Ilkov, and S. L. Chin, “Beam filamentation and the white-light continuum divergence,” Opt. Commun. 129, 193–198 (1996).
    [CrossRef]
  6. H. Wille, M. Rodriguez, J. Kasparian, D. Mondelain, J. Yu, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Wöste, “Teramobile: A mobile femtosecond-terawatt laser and detection system,” Eur. Phys. J. AP. 20, 183–190 (2002).
    [CrossRef]
  7. C. V. Shank, R. K. Fork, R. F. Leheny, and J. Shah, “Dynamics of photoexcited GaAs band-edge absorption with subpicosecond resolution,” Phys. Rev. Lett. 42, 112–115 (1979).
    [CrossRef]
  8. P. B. Corkum, C. Rolland, and T. Srinivasan-Rao, “Supercontinuum generation in gases,” Phys. Rev. Lett. 57, 2268–2271 (1986).
    [CrossRef] [PubMed]
  9. G. Méjean, J. Kasparian, J. Yu, S. Frey, E. Salmon, and J-P. Wolf, “Remote detection and identification of biological aerosols using a femtosecond terawatt lidar system,” Appl. Phys. B. 78, 535–537 (2004).
    [CrossRef]
  10. G. Méchain, A. Couairon, M. Franco, B. Prade, and A. Mysyrowicz, “Organizing multiple femtosecond filaments in air,” Phys. Rev. Lett. 93, 035003 (2004).
    [CrossRef] [PubMed]
  11. H. Schroeder, J. Liu, and S. L. Chin, “From random to controlled small-scale filamentation in water,” Opt. Express. 12, 4768–4774 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-20-4768
    [CrossRef] [PubMed]
  12. G. Fibich, S. Eisenmann, B. Ilan, and A. Zigler, “Control of multiple filamentation in air,” Optics Letters,  29, 1772–1774 (2004).
    [CrossRef] [PubMed]
  13. A. D. Dubietis, G. Tamošauskas, G. Fibich, and B. Ilan, “Multiple filamentation induced by beam ellipticity,” Optics Letters,  29, 1126–1128 (2004).
    [CrossRef] [PubMed]
  14. E. Siegman, Lasers, University Science Books, Sausalito, pp632 (1986).
  15. R. A. Lamb, K. J. Cook, and A K. Kar, “Phase stability and diffraction effects in self-focused white-light filaments in water and glass,” Proc. SPIE. 5620, 218–227 (2004).
    [CrossRef]
  16. K. Cook, R. A. Lamb, and A. K. Kar, “White-light supercontinuum interference of self-focused filaments in water,” Appl. Phys. Lett. 83, 3861–3863 (2003).
    [CrossRef]
  17. W. Liu, S. L. Chin, O. Kosareva, I. S. Golubtsov, and V. P. Kandidov, Opt. Commun.225, 193 (2003).
    [CrossRef]
  18. Y. R. Shen, Principles of Non-linear Optics, John Wiley & Sons, New York, pp312 (1984).

2004 (6)

G. Méjean, J. Kasparian, J. Yu, S. Frey, E. Salmon, and J-P. Wolf, “Remote detection and identification of biological aerosols using a femtosecond terawatt lidar system,” Appl. Phys. B. 78, 535–537 (2004).
[CrossRef]

G. Méchain, A. Couairon, M. Franco, B. Prade, and A. Mysyrowicz, “Organizing multiple femtosecond filaments in air,” Phys. Rev. Lett. 93, 035003 (2004).
[CrossRef] [PubMed]

H. Schroeder, J. Liu, and S. L. Chin, “From random to controlled small-scale filamentation in water,” Opt. Express. 12, 4768–4774 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-20-4768
[CrossRef] [PubMed]

G. Fibich, S. Eisenmann, B. Ilan, and A. Zigler, “Control of multiple filamentation in air,” Optics Letters,  29, 1772–1774 (2004).
[CrossRef] [PubMed]

A. D. Dubietis, G. Tamošauskas, G. Fibich, and B. Ilan, “Multiple filamentation induced by beam ellipticity,” Optics Letters,  29, 1126–1128 (2004).
[CrossRef] [PubMed]

R. A. Lamb, K. J. Cook, and A K. Kar, “Phase stability and diffraction effects in self-focused white-light filaments in water and glass,” Proc. SPIE. 5620, 218–227 (2004).
[CrossRef]

2003 (1)

K. Cook, R. A. Lamb, and A. K. Kar, “White-light supercontinuum interference of self-focused filaments in water,” Appl. Phys. Lett. 83, 3861–3863 (2003).
[CrossRef]

2002 (1)

H. Wille, M. Rodriguez, J. Kasparian, D. Mondelain, J. Yu, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Wöste, “Teramobile: A mobile femtosecond-terawatt laser and detection system,” Eur. Phys. J. AP. 20, 183–190 (2002).
[CrossRef]

2000 (1)

A. Gaeta, “Catastrophic collapse of ultrashort pulses,” Phys. Rev. Lett. 84, 3582–3585 (2000).
[CrossRef] [PubMed]

1999 (1)

A. Brodeur and S. L. Chin, “Ultrafast white-light continuum generation and self-focsuing in condensed media,” J. Opt. Soc. Am. B. 16, 637–650 (1999).
[CrossRef]

1996 (2)

A. Brodeur, F. A. Ilkov, and S. L. Chin, “Beam filamentation and the white-light continuum divergence,” Opt. Commun. 129, 193–198 (1996).
[CrossRef]

M. Wittmann and A. Penzkofer, “Spectral broadening of femtosecond laser pulses,” Opt. Commun. 126, 308–317 (1996).
[CrossRef]

1986 (1)

P. B. Corkum, C. Rolland, and T. Srinivasan-Rao, “Supercontinuum generation in gases,” Phys. Rev. Lett. 57, 2268–2271 (1986).
[CrossRef] [PubMed]

1979 (1)

C. V. Shank, R. K. Fork, R. F. Leheny, and J. Shah, “Dynamics of photoexcited GaAs band-edge absorption with subpicosecond resolution,” Phys. Rev. Lett. 42, 112–115 (1979).
[CrossRef]

1970 (1)

R. R. Alfano and S. L. Shapiro, “Emission in the region 4000 to 7000 Å via four-photon coupling in glass,” Phys. Rev. Lett. 24, 584–587 (1970).
[CrossRef]

Alfano, R. R.

R. R. Alfano and S. L. Shapiro, “Emission in the region 4000 to 7000 Å via four-photon coupling in glass,” Phys. Rev. Lett. 24, 584–587 (1970).
[CrossRef]

Brodeur, A.

A. Brodeur and S. L. Chin, “Ultrafast white-light continuum generation and self-focsuing in condensed media,” J. Opt. Soc. Am. B. 16, 637–650 (1999).
[CrossRef]

A. Brodeur, F. A. Ilkov, and S. L. Chin, “Beam filamentation and the white-light continuum divergence,” Opt. Commun. 129, 193–198 (1996).
[CrossRef]

Chin, S. L.

H. Schroeder, J. Liu, and S. L. Chin, “From random to controlled small-scale filamentation in water,” Opt. Express. 12, 4768–4774 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-20-4768
[CrossRef] [PubMed]

A. Brodeur and S. L. Chin, “Ultrafast white-light continuum generation and self-focsuing in condensed media,” J. Opt. Soc. Am. B. 16, 637–650 (1999).
[CrossRef]

A. Brodeur, F. A. Ilkov, and S. L. Chin, “Beam filamentation and the white-light continuum divergence,” Opt. Commun. 129, 193–198 (1996).
[CrossRef]

W. Liu, S. L. Chin, O. Kosareva, I. S. Golubtsov, and V. P. Kandidov, Opt. Commun.225, 193 (2003).
[CrossRef]

Cook, K.

K. Cook, R. A. Lamb, and A. K. Kar, “White-light supercontinuum interference of self-focused filaments in water,” Appl. Phys. Lett. 83, 3861–3863 (2003).
[CrossRef]

Cook, K. J.

R. A. Lamb, K. J. Cook, and A K. Kar, “Phase stability and diffraction effects in self-focused white-light filaments in water and glass,” Proc. SPIE. 5620, 218–227 (2004).
[CrossRef]

Corkum, P. B.

P. B. Corkum, C. Rolland, and T. Srinivasan-Rao, “Supercontinuum generation in gases,” Phys. Rev. Lett. 57, 2268–2271 (1986).
[CrossRef] [PubMed]

Couairon, A.

G. Méchain, A. Couairon, M. Franco, B. Prade, and A. Mysyrowicz, “Organizing multiple femtosecond filaments in air,” Phys. Rev. Lett. 93, 035003 (2004).
[CrossRef] [PubMed]

Dubietis, A. D.

A. D. Dubietis, G. Tamošauskas, G. Fibich, and B. Ilan, “Multiple filamentation induced by beam ellipticity,” Optics Letters,  29, 1126–1128 (2004).
[CrossRef] [PubMed]

Eisenmann, S.

G. Fibich, S. Eisenmann, B. Ilan, and A. Zigler, “Control of multiple filamentation in air,” Optics Letters,  29, 1772–1774 (2004).
[CrossRef] [PubMed]

Fibich, G.

G. Fibich, S. Eisenmann, B. Ilan, and A. Zigler, “Control of multiple filamentation in air,” Optics Letters,  29, 1772–1774 (2004).
[CrossRef] [PubMed]

A. D. Dubietis, G. Tamošauskas, G. Fibich, and B. Ilan, “Multiple filamentation induced by beam ellipticity,” Optics Letters,  29, 1126–1128 (2004).
[CrossRef] [PubMed]

Fork, R. K.

C. V. Shank, R. K. Fork, R. F. Leheny, and J. Shah, “Dynamics of photoexcited GaAs band-edge absorption with subpicosecond resolution,” Phys. Rev. Lett. 42, 112–115 (1979).
[CrossRef]

Franco, M.

G. Méchain, A. Couairon, M. Franco, B. Prade, and A. Mysyrowicz, “Organizing multiple femtosecond filaments in air,” Phys. Rev. Lett. 93, 035003 (2004).
[CrossRef] [PubMed]

Frey, S.

G. Méjean, J. Kasparian, J. Yu, S. Frey, E. Salmon, and J-P. Wolf, “Remote detection and identification of biological aerosols using a femtosecond terawatt lidar system,” Appl. Phys. B. 78, 535–537 (2004).
[CrossRef]

Gaeta, A.

A. Gaeta, “Catastrophic collapse of ultrashort pulses,” Phys. Rev. Lett. 84, 3582–3585 (2000).
[CrossRef] [PubMed]

Golubtsov, I. S.

W. Liu, S. L. Chin, O. Kosareva, I. S. Golubtsov, and V. P. Kandidov, Opt. Commun.225, 193 (2003).
[CrossRef]

Ilan, B.

A. D. Dubietis, G. Tamošauskas, G. Fibich, and B. Ilan, “Multiple filamentation induced by beam ellipticity,” Optics Letters,  29, 1126–1128 (2004).
[CrossRef] [PubMed]

G. Fibich, S. Eisenmann, B. Ilan, and A. Zigler, “Control of multiple filamentation in air,” Optics Letters,  29, 1772–1774 (2004).
[CrossRef] [PubMed]

Ilkov, F. A.

A. Brodeur, F. A. Ilkov, and S. L. Chin, “Beam filamentation and the white-light continuum divergence,” Opt. Commun. 129, 193–198 (1996).
[CrossRef]

Kandidov, V. P.

W. Liu, S. L. Chin, O. Kosareva, I. S. Golubtsov, and V. P. Kandidov, Opt. Commun.225, 193 (2003).
[CrossRef]

Kar, A K.

R. A. Lamb, K. J. Cook, and A K. Kar, “Phase stability and diffraction effects in self-focused white-light filaments in water and glass,” Proc. SPIE. 5620, 218–227 (2004).
[CrossRef]

Kar, A. K.

K. Cook, R. A. Lamb, and A. K. Kar, “White-light supercontinuum interference of self-focused filaments in water,” Appl. Phys. Lett. 83, 3861–3863 (2003).
[CrossRef]

Kasparian, J.

G. Méjean, J. Kasparian, J. Yu, S. Frey, E. Salmon, and J-P. Wolf, “Remote detection and identification of biological aerosols using a femtosecond terawatt lidar system,” Appl. Phys. B. 78, 535–537 (2004).
[CrossRef]

H. Wille, M. Rodriguez, J. Kasparian, D. Mondelain, J. Yu, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Wöste, “Teramobile: A mobile femtosecond-terawatt laser and detection system,” Eur. Phys. J. AP. 20, 183–190 (2002).
[CrossRef]

Kosareva, O.

W. Liu, S. L. Chin, O. Kosareva, I. S. Golubtsov, and V. P. Kandidov, Opt. Commun.225, 193 (2003).
[CrossRef]

Lamb, R. A.

R. A. Lamb, K. J. Cook, and A K. Kar, “Phase stability and diffraction effects in self-focused white-light filaments in water and glass,” Proc. SPIE. 5620, 218–227 (2004).
[CrossRef]

K. Cook, R. A. Lamb, and A. K. Kar, “White-light supercontinuum interference of self-focused filaments in water,” Appl. Phys. Lett. 83, 3861–3863 (2003).
[CrossRef]

Leheny, R. F.

C. V. Shank, R. K. Fork, R. F. Leheny, and J. Shah, “Dynamics of photoexcited GaAs band-edge absorption with subpicosecond resolution,” Phys. Rev. Lett. 42, 112–115 (1979).
[CrossRef]

Liu, J.

H. Schroeder, J. Liu, and S. L. Chin, “From random to controlled small-scale filamentation in water,” Opt. Express. 12, 4768–4774 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-20-4768
[CrossRef] [PubMed]

Liu, W.

W. Liu, S. L. Chin, O. Kosareva, I. S. Golubtsov, and V. P. Kandidov, Opt. Commun.225, 193 (2003).
[CrossRef]

Méchain, G.

G. Méchain, A. Couairon, M. Franco, B. Prade, and A. Mysyrowicz, “Organizing multiple femtosecond filaments in air,” Phys. Rev. Lett. 93, 035003 (2004).
[CrossRef] [PubMed]

Méjean, G.

G. Méjean, J. Kasparian, J. Yu, S. Frey, E. Salmon, and J-P. Wolf, “Remote detection and identification of biological aerosols using a femtosecond terawatt lidar system,” Appl. Phys. B. 78, 535–537 (2004).
[CrossRef]

Mondelain, D.

H. Wille, M. Rodriguez, J. Kasparian, D. Mondelain, J. Yu, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Wöste, “Teramobile: A mobile femtosecond-terawatt laser and detection system,” Eur. Phys. J. AP. 20, 183–190 (2002).
[CrossRef]

Mysyrowicz, A.

G. Méchain, A. Couairon, M. Franco, B. Prade, and A. Mysyrowicz, “Organizing multiple femtosecond filaments in air,” Phys. Rev. Lett. 93, 035003 (2004).
[CrossRef] [PubMed]

H. Wille, M. Rodriguez, J. Kasparian, D. Mondelain, J. Yu, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Wöste, “Teramobile: A mobile femtosecond-terawatt laser and detection system,” Eur. Phys. J. AP. 20, 183–190 (2002).
[CrossRef]

Penzkofer, A.

M. Wittmann and A. Penzkofer, “Spectral broadening of femtosecond laser pulses,” Opt. Commun. 126, 308–317 (1996).
[CrossRef]

Prade, B.

G. Méchain, A. Couairon, M. Franco, B. Prade, and A. Mysyrowicz, “Organizing multiple femtosecond filaments in air,” Phys. Rev. Lett. 93, 035003 (2004).
[CrossRef] [PubMed]

Rodriguez, M.

H. Wille, M. Rodriguez, J. Kasparian, D. Mondelain, J. Yu, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Wöste, “Teramobile: A mobile femtosecond-terawatt laser and detection system,” Eur. Phys. J. AP. 20, 183–190 (2002).
[CrossRef]

Rolland, C.

P. B. Corkum, C. Rolland, and T. Srinivasan-Rao, “Supercontinuum generation in gases,” Phys. Rev. Lett. 57, 2268–2271 (1986).
[CrossRef] [PubMed]

Salmon, E.

G. Méjean, J. Kasparian, J. Yu, S. Frey, E. Salmon, and J-P. Wolf, “Remote detection and identification of biological aerosols using a femtosecond terawatt lidar system,” Appl. Phys. B. 78, 535–537 (2004).
[CrossRef]

Sauerbrey, R.

H. Wille, M. Rodriguez, J. Kasparian, D. Mondelain, J. Yu, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Wöste, “Teramobile: A mobile femtosecond-terawatt laser and detection system,” Eur. Phys. J. AP. 20, 183–190 (2002).
[CrossRef]

Schroeder, H.

H. Schroeder, J. Liu, and S. L. Chin, “From random to controlled small-scale filamentation in water,” Opt. Express. 12, 4768–4774 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-20-4768
[CrossRef] [PubMed]

Shah, J.

C. V. Shank, R. K. Fork, R. F. Leheny, and J. Shah, “Dynamics of photoexcited GaAs band-edge absorption with subpicosecond resolution,” Phys. Rev. Lett. 42, 112–115 (1979).
[CrossRef]

Shank, C. V.

C. V. Shank, R. K. Fork, R. F. Leheny, and J. Shah, “Dynamics of photoexcited GaAs band-edge absorption with subpicosecond resolution,” Phys. Rev. Lett. 42, 112–115 (1979).
[CrossRef]

Shapiro, S. L.

R. R. Alfano and S. L. Shapiro, “Emission in the region 4000 to 7000 Å via four-photon coupling in glass,” Phys. Rev. Lett. 24, 584–587 (1970).
[CrossRef]

Shen, Y. R.

Y. R. Shen, Principles of Non-linear Optics, John Wiley & Sons, New York, pp312 (1984).

Siegman, E.

E. Siegman, Lasers, University Science Books, Sausalito, pp632 (1986).

Srinivasan-Rao, T.

P. B. Corkum, C. Rolland, and T. Srinivasan-Rao, “Supercontinuum generation in gases,” Phys. Rev. Lett. 57, 2268–2271 (1986).
[CrossRef] [PubMed]

Tamošauskas, G.

A. D. Dubietis, G. Tamošauskas, G. Fibich, and B. Ilan, “Multiple filamentation induced by beam ellipticity,” Optics Letters,  29, 1126–1128 (2004).
[CrossRef] [PubMed]

Wille, H.

H. Wille, M. Rodriguez, J. Kasparian, D. Mondelain, J. Yu, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Wöste, “Teramobile: A mobile femtosecond-terawatt laser and detection system,” Eur. Phys. J. AP. 20, 183–190 (2002).
[CrossRef]

Wittmann, M.

M. Wittmann and A. Penzkofer, “Spectral broadening of femtosecond laser pulses,” Opt. Commun. 126, 308–317 (1996).
[CrossRef]

Wolf, J.-P.

H. Wille, M. Rodriguez, J. Kasparian, D. Mondelain, J. Yu, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Wöste, “Teramobile: A mobile femtosecond-terawatt laser and detection system,” Eur. Phys. J. AP. 20, 183–190 (2002).
[CrossRef]

Wolf, J-P.

G. Méjean, J. Kasparian, J. Yu, S. Frey, E. Salmon, and J-P. Wolf, “Remote detection and identification of biological aerosols using a femtosecond terawatt lidar system,” Appl. Phys. B. 78, 535–537 (2004).
[CrossRef]

Wöste, L.

H. Wille, M. Rodriguez, J. Kasparian, D. Mondelain, J. Yu, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Wöste, “Teramobile: A mobile femtosecond-terawatt laser and detection system,” Eur. Phys. J. AP. 20, 183–190 (2002).
[CrossRef]

Yu, J.

G. Méjean, J. Kasparian, J. Yu, S. Frey, E. Salmon, and J-P. Wolf, “Remote detection and identification of biological aerosols using a femtosecond terawatt lidar system,” Appl. Phys. B. 78, 535–537 (2004).
[CrossRef]

H. Wille, M. Rodriguez, J. Kasparian, D. Mondelain, J. Yu, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Wöste, “Teramobile: A mobile femtosecond-terawatt laser and detection system,” Eur. Phys. J. AP. 20, 183–190 (2002).
[CrossRef]

Zigler, A.

G. Fibich, S. Eisenmann, B. Ilan, and A. Zigler, “Control of multiple filamentation in air,” Optics Letters,  29, 1772–1774 (2004).
[CrossRef] [PubMed]

Appl. Phys. B. (1)

G. Méjean, J. Kasparian, J. Yu, S. Frey, E. Salmon, and J-P. Wolf, “Remote detection and identification of biological aerosols using a femtosecond terawatt lidar system,” Appl. Phys. B. 78, 535–537 (2004).
[CrossRef]

Appl. Phys. Lett. (1)

K. Cook, R. A. Lamb, and A. K. Kar, “White-light supercontinuum interference of self-focused filaments in water,” Appl. Phys. Lett. 83, 3861–3863 (2003).
[CrossRef]

Eur. Phys. J. AP. (1)

H. Wille, M. Rodriguez, J. Kasparian, D. Mondelain, J. Yu, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Wöste, “Teramobile: A mobile femtosecond-terawatt laser and detection system,” Eur. Phys. J. AP. 20, 183–190 (2002).
[CrossRef]

J. Opt. Soc. Am. B. (1)

A. Brodeur and S. L. Chin, “Ultrafast white-light continuum generation and self-focsuing in condensed media,” J. Opt. Soc. Am. B. 16, 637–650 (1999).
[CrossRef]

Opt. Commun. (2)

A. Brodeur, F. A. Ilkov, and S. L. Chin, “Beam filamentation and the white-light continuum divergence,” Opt. Commun. 129, 193–198 (1996).
[CrossRef]

M. Wittmann and A. Penzkofer, “Spectral broadening of femtosecond laser pulses,” Opt. Commun. 126, 308–317 (1996).
[CrossRef]

Opt. Express. (1)

H. Schroeder, J. Liu, and S. L. Chin, “From random to controlled small-scale filamentation in water,” Opt. Express. 12, 4768–4774 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-20-4768
[CrossRef] [PubMed]

Optics Letters (2)

G. Fibich, S. Eisenmann, B. Ilan, and A. Zigler, “Control of multiple filamentation in air,” Optics Letters,  29, 1772–1774 (2004).
[CrossRef] [PubMed]

A. D. Dubietis, G. Tamošauskas, G. Fibich, and B. Ilan, “Multiple filamentation induced by beam ellipticity,” Optics Letters,  29, 1126–1128 (2004).
[CrossRef] [PubMed]

Phys. Rev. Lett. (5)

R. R. Alfano and S. L. Shapiro, “Emission in the region 4000 to 7000 Å via four-photon coupling in glass,” Phys. Rev. Lett. 24, 584–587 (1970).
[CrossRef]

A. Gaeta, “Catastrophic collapse of ultrashort pulses,” Phys. Rev. Lett. 84, 3582–3585 (2000).
[CrossRef] [PubMed]

C. V. Shank, R. K. Fork, R. F. Leheny, and J. Shah, “Dynamics of photoexcited GaAs band-edge absorption with subpicosecond resolution,” Phys. Rev. Lett. 42, 112–115 (1979).
[CrossRef]

P. B. Corkum, C. Rolland, and T. Srinivasan-Rao, “Supercontinuum generation in gases,” Phys. Rev. Lett. 57, 2268–2271 (1986).
[CrossRef] [PubMed]

G. Méchain, A. Couairon, M. Franco, B. Prade, and A. Mysyrowicz, “Organizing multiple femtosecond filaments in air,” Phys. Rev. Lett. 93, 035003 (2004).
[CrossRef] [PubMed]

Proc. SPIE. (1)

R. A. Lamb, K. J. Cook, and A K. Kar, “Phase stability and diffraction effects in self-focused white-light filaments in water and glass,” Proc. SPIE. 5620, 218–227 (2004).
[CrossRef]

Other (3)

W. Liu, S. L. Chin, O. Kosareva, I. S. Golubtsov, and V. P. Kandidov, Opt. Commun.225, 193 (2003).
[CrossRef]

Y. R. Shen, Principles of Non-linear Optics, John Wiley & Sons, New York, pp312 (1984).

E. Siegman, Lasers, University Science Books, Sausalito, pp632 (1986).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Experimental set-up for inducing filament formation.

Fig. 2.
Fig. 2.

Theoretical and measured axial intensity of the Fresnel diffraction profile. Inset: Images of transverse profile at various maxima and minima.

Fig. 3.
Fig. 3.

Filament position inside glass block (right Y axis, red and green lines) recorded for various post-aperture pulse energies. The measured axial beam intensity from Fig. 2. is also plotted (left Y axis, blue line).

Fig. 4.
Fig. 4.

Filament position inside glass block for maximum post-aperture energy of 62µJ (right Y axis, red and green lines) recorded for various post-aperture pulse energies. The measured axial beam intensity from Fig. 2. is also plotted (left Y axis, blue line).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

E ( s , z ) = i λ 0 a 0 2 π E 0 ( s 0 , z 0 ) exp ( i k ρ ) cos ( θ ) ρ d S 0
I ( s , z ) = 2 I 0 ( s 0 ) [ 1 cos ( k a 2 2 z ) ]
z f = 0.367 k b 2 { [ P P crit 0.852 ] 2 0.0219 } 1 2

Metrics