Abstract

High speed electro-optical cavity dumping is demonstrated with diode-pumped mode-locked laser oscillators, namely a femtosecond Yb:glass and a picosecond Nd:YVO4 oscillator. Repetition frequencies exceeding 1MHz are obtained with pulse energies of more than 300nJ/1µJ. Being compact and easy to operate light sources, these laser systems open up various scientific and industrial applications.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. X. Liu, D. Du, and G. Mourou, �??Laser ablation and micromachining with ultrashort laser pulses,�?? IEEE J. Quantum Electron. QE-33, 1706�??1716 (1997).
    [CrossRef]
  2. R. Osellame, S. Taccheo, M. Marangoni, R. Ramponi, P. Laporta, D. Polli, S. D. Silvestri, and G. Cerullo, �??Femtosecond writing of active optical waveguides with astigmatically shaped beams,�?? J. Opt. Soc. Am. B 20, 1559�??1567 (2003).
    [CrossRef]
  3. R. Osellame, N. Chiodo, G. D. Valle, R. Ramponi, G. Cerullo, A. Killi, U. Morgner, M. Lederer, and D. Kopf, �??Optical waveguide writing with a diode-pumped femtosecond oscillator,�?? Opt. Lett. 29, 1900 (2004).
    [CrossRef] [PubMed]
  4. S. Taccheo, G. D. Valle, R. Osellame, G. Cerullo, N. Chiodo, P. Laporta, O. Svelto, A. Killi, U. Morgner,M. Lederer, and D. Kopf, �??Er:Yb-doped waveguide laser fabricated by femtosecond laser pulses,�?? Opt. Lett. 29, 2626 (2004).
    [CrossRef] [PubMed]
  5. G. Cerullo and S. D. Silvestri, �??Ultrafast optical parametric amplifiers,�?? Rev. Sci. Instrum. 74, 1�??18 (2002).
    [CrossRef]
  6. M. Ramaswamy, M. Ulman, J. Paye, and J. G. Fujimoto, �??Cavity-dumped femtosecond Kerr-lens mode-locked Ti:Al2O3 laser,�?? Opt. Lett. 18, 1822�??1824 (1993).
    [CrossRef] [PubMed]
  7. M. S. Pshenichnikov, W. P. de Boeij, and D. A. Wiersma, �??Generation of 13-fs, 5-MW pulses from a cavitydumped Ti:sapphire laser,�?? Opt. Lett. 19, 572�??574 (1994).
    [CrossRef] [PubMed]
  8. G. N. Gibson, R. Klank, F. Gibson, and B. E. Bouma, �??Electro-optically cavity-dumped ultrashort-pulse Ti:sapphire oscillator,�?? Opt. Lett. 21, 1055�??1057 (1996).
    [CrossRef] [PubMed]
  9. A. Baltuska, Z.Wei, M. Pshenichnikov, D. Wiersma, and R. Szip¨ocs, �??All solid-state cavity dumped sub-5-fs laser,�?? Appl. Phys. B 65, 175�??188 (1997).
    [CrossRef]
  10. S. Schneider, A. Stockmann, and W. Schuesslbauer, �??Self-starting mode-locked cavity-dumped femtosecond Ti:sapphire laser employing a semiconductor saturable absorber mirror,�?? Opt. Eng. 6, 220�??226 (2000).
  11. U. Keller, K. Weingarten, F. K¨artner, D. Kopf, B. Braun, I. Jung, R. Fluck, C. H¨onninger, N. Matuschek, and J. a.d.Au, �??Semiconductor Saturable Absorber Mirrors (SESAM�??s) for Femtosecond to Nanosecond Pulse Generation in Solid-State Lasers,�?? IEEE J. Sel. Top. Quantum Electron. 2, 435 (1996).
    [CrossRef]
  12. C. H¨onninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, �??Ultrafast ytterbium-doped bulk lasers and laser amplifiers,�?? Appl. Phys. B 69, 197 (1999).
  13. A. Killi, U. Morgner, M. J. Lederer, and D. Kopf, �??Diode-pumped femtosecond laser oscillator with cavity dumping,�?? Opt. Lett. 29, 1288�??1290 (2004).
    [CrossRef] [PubMed]
  14. A. Killi and U. Morgner, �??Solitary pulse shaping dynamics in cavity-dumped laser oscillators,�?? Opt. Express 12, 3297�??3307 (2004).
    [CrossRef]
  15. S. M. Kelly, �??Characteristic sideband instability of periodically amplified average soliton,�?? Electron. Lett. 28(15), 806�??807 (1992).
    [CrossRef]
  16. N. J. Smith, K. J. Blow, and I. Andonovic, �??Sideband Generation Through Perturbations to the Average Soliton Model,�?? IEEE J. Lightwave Technol. 10, 1329�??1333 (1992).
    [CrossRef]
  17. D. J. Jones, Y. Chen, H. A. Haus, and E. P. Ippen, �??Resonant sideband generation in stretched-pulse fiber lasers,�?? Opt. Lett. 23, 1535�??1537 (1998).
    [CrossRef]
  18. J. Hryniewicz, G. Carter, and Y. Chen, �??Picosecond pulses produced by synchronously pumped cavity dumped pyridine 1 dye laser,�?? Opt. Commun. 54, 230�??2 (1985).
    [CrossRef]

Appl. Phys. B (2)

C. H¨onninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, �??Ultrafast ytterbium-doped bulk lasers and laser amplifiers,�?? Appl. Phys. B 69, 197 (1999).

A. Baltuska, Z.Wei, M. Pshenichnikov, D. Wiersma, and R. Szip¨ocs, �??All solid-state cavity dumped sub-5-fs laser,�?? Appl. Phys. B 65, 175�??188 (1997).
[CrossRef]

Electron. Lett. (1)

S. M. Kelly, �??Characteristic sideband instability of periodically amplified average soliton,�?? Electron. Lett. 28(15), 806�??807 (1992).
[CrossRef]

IEEE J. Lightwave Technol. (1)

N. J. Smith, K. J. Blow, and I. Andonovic, �??Sideband Generation Through Perturbations to the Average Soliton Model,�?? IEEE J. Lightwave Technol. 10, 1329�??1333 (1992).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

U. Keller, K. Weingarten, F. K¨artner, D. Kopf, B. Braun, I. Jung, R. Fluck, C. H¨onninger, N. Matuschek, and J. a.d.Au, �??Semiconductor Saturable Absorber Mirrors (SESAM�??s) for Femtosecond to Nanosecond Pulse Generation in Solid-State Lasers,�?? IEEE J. Sel. Top. Quantum Electron. 2, 435 (1996).
[CrossRef]

IEEE Journ. of Quantum Electron. (1)

X. Liu, D. Du, and G. Mourou, �??Laser ablation and micromachining with ultrashort laser pulses,�?? IEEE J. Quantum Electron. QE-33, 1706�??1716 (1997).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

J. Hryniewicz, G. Carter, and Y. Chen, �??Picosecond pulses produced by synchronously pumped cavity dumped pyridine 1 dye laser,�?? Opt. Commun. 54, 230�??2 (1985).
[CrossRef]

Opt. Eng. (1)

S. Schneider, A. Stockmann, and W. Schuesslbauer, �??Self-starting mode-locked cavity-dumped femtosecond Ti:sapphire laser employing a semiconductor saturable absorber mirror,�?? Opt. Eng. 6, 220�??226 (2000).

Opt. Express (1)

Opt. Lett. (7)

Rev. Sci. Instrum. (1)

G. Cerullo and S. D. Silvestri, �??Ultrafast optical parametric amplifiers,�?? Rev. Sci. Instrum. 74, 1�??18 (2002).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic setup of the cavity-dumped femtosecond Yb:glass laser system.

Fig. 2.
Fig. 2.

Power spectra for increasing dumping frequencies from 475 kHz to 1.1 MHz. On the right the autocorrelation signal in blue is depicted at 1.1MHz with a width of τ=420fs resulting in a pulse width of 250 fs, assuming a sech2-shaped pulse. The fit to the autocorrelation of a sech2 pulse is shown as the dashed red curve.

Fig. 3.
Fig. 3.

Left: power spectrum of the 750 nJ pulse with a spectral width of 2.9 nm. The inset shows the autocorrelation signal (ACS) with a width of τ=780fs resulting in a pulse width of 470 fs, assuming a sech2-shaped pulse. The fit to the autocorrelation of a sech2 pulse is shown as the dashed red curve. Right: Intra-cavity energy transient.

Fig. 4.
Fig. 4.

Schematic setup of the cavity-dumped picosecond Nd:YVO4 laser system

Fig. 5.
Fig. 5.

Left: Typical autocorrelation of the output pulses at a dumping rate of 1.02 MHz. Right: Normalized intra-cavity pulse energy in dependence on the number of round-trips (the residual ripples in the curve are due to aliasing).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

N R ϕ cav ( Ω ± n ) = ϕ pulse n 2 π ,
ϕ cav ( Ω ) ϕ cav ( Ω 0 ) + β 1 ( Ω Ω 0 ) + 1 2 β 2 ( Ω Ω 0 ) 2 + 1 6 β 3 ( Ω Ω 0 ) 3 ;
n phase = 2 π β 2 τ FWHM 2 1.762 2 .

Metrics