Abstract

Longitudinal and transverse microholes are drilled in soda-lime glass by water-assisted ablation with femtosecond laser pulses. True three-dimensional microchannels consisting of longitudinal and transverse microholes are presented. At low incident pulse energy, only one transverse microhole is observed. At high incident pulse energy, multiple transverse microholes can be simultaneously drilled. Using a focusing lens with numerical aperture of 0.5, two, three and four transverse microholes are fabricated at 3.2, 4.9 and 9.3µJ/pulse, which is qualitatively explained by the multiple foci process.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. Y. Kondo, J. R. Qiu, T. Mitsuyu, K. Hirao, and T. Yoko, �??Three-dimensional microdrilling of glass by multiphoton process and chemical etching,�?? Jpn. J. Appl. Phys. 38, L1146-L1148 (1999).
    [CrossRef]
  2. M. Masuda, K. Sugioka, Y. Cheng, N. Aoki, M. Kawachi, K. Shihoyama, K. Toyoda, H. Helvajian, and K. Midorikawa, �??3-D microstructuring inside photosensitive glass by femtosecond laser excitation,�?? Appl. Phys. A, 76, 857-860 (2003).
    [CrossRef]
  3. Y. Cheng, K. Sugioka, K. Midorikawa, M. Masuda, K. Toyoda, M. Kawachi, and K. Shihoyama, �??Control of the cross-sectional shape of a hollow microchannel embedded in photostructurable glass by use of a femtosecond laser,�?? Opt. Lett. 28, 55-57 (2003).
    [CrossRef] [PubMed]
  4. A. Marcinkevièius, S. Juodkazis, M. Watanabe, M. Miwa, S. Matsuo, H. Misawa, and J. Nishii, �??Femtosecond laser-assisted three-dimensional microfabrication in silica,�?? Opt. Lett. 26, 277-279 (2001).
    [CrossRef]
  5. Y. Li, K. Itoh, W. Watanabe, K. Yamada, D. Kuroda, J. Nishii, and Y. Y. Jiang, �??Three-dimensional hole drilling of silica glass from the rear surface with femtosecond laser pulses,�?? Opt. Lett. 26, 1912-1914 (2001).
    [CrossRef]
  6. L. Shah, J. Tawney, M. Richardson, and K. Richardson, �??Femtosecond laser deep hole drilling of silicate glasses in air,�?? Appl. Surf. Sci. 183, 151-164 (2001).
    [CrossRef]
  7. A. Zoubir, L. Shah, K. Richardson, and M. Richardson, �??Practical uses of femtosecond laser micro-materials processing,�?? Appl. Phys. A 77, 311-315 (2003).
  8. R. An, Y. Li, Y. P. Dou, Y. Fang, H. Yang and Q. H. Gong, �??Laser micro-hole drilling of soda-lime glass with femtosecond pulses,�?? Chin. Phys. Lett. 21, 2465-2468 (2004).
    [CrossRef]
  9. D. J. Hwang, T. Y. Choi, and C. P. Grigoropoulos, �??Liquid-assisted femtosecond laser drilling of straight and three-dimensional microchannels in glass,�?? Appl. Phys. A 79, 605-612 (2004).
    [CrossRef]
  10. H.C. Guo, H. B. Jiang, Y. Fang, C. Peng, H. Yang, Y. Li, Q. H. Gong, �??Pulse duration dependence of femtosecond laser induced refractive index modulation in fused silica,�?? J. Opt. A 6, 787- 790 (2004).
    [CrossRef]
  11. Z. X. Wu, H. B. Jiang, Q. Sun, H. Yang, and Q. H. Gong, �??Filamentation and temporal reshaping of a femtosecond pulse in fuse silica,�?? Phys. Rev. A 68,063820 (2003).
    [CrossRef]
  12. Z. X. Wu, H. B. Jiang, L. Luo, H. C. Guo, H. Yang, and Q. H. Gong, �??Multiple foci and a long filament observed with focused femtosecond pulse propagation in fused silica,�?? Opt. Lett. 27, 448-450 (2002).
    [CrossRef]
  13. N. Aközbek, C. M. Bowden, A. Talebpour, and S. L. Chin, �??Femtosecond pulse propagation in air: Variational analysis,�?? Phys. Rev. E 61, 4540-4549 (2000).
    [CrossRef]
  14. S. H. Wiersma, P. Török, T. D. Visser, and P. Varga, �??Comparison of different theories for focusing through a plane interface,�?? J. Opt. Soc. Am. A 14, 1482-1490 (1997).
    [CrossRef]

Appl. Phys. A (1)

D. J. Hwang, T. Y. Choi, and C. P. Grigoropoulos, �??Liquid-assisted femtosecond laser drilling of straight and three-dimensional microchannels in glass,�?? Appl. Phys. A 79, 605-612 (2004).
[CrossRef]

Appl. Phys. A, (1)

M. Masuda, K. Sugioka, Y. Cheng, N. Aoki, M. Kawachi, K. Shihoyama, K. Toyoda, H. Helvajian, and K. Midorikawa, �??3-D microstructuring inside photosensitive glass by femtosecond laser excitation,�?? Appl. Phys. A, 76, 857-860 (2003).
[CrossRef]

Appl. Phys. A. (1)

A. Zoubir, L. Shah, K. Richardson, and M. Richardson, �??Practical uses of femtosecond laser micro-materials processing,�?? Appl. Phys. A 77, 311-315 (2003).

Appl. Surf. Sci. (1)

L. Shah, J. Tawney, M. Richardson, and K. Richardson, �??Femtosecond laser deep hole drilling of silicate glasses in air,�?? Appl. Surf. Sci. 183, 151-164 (2001).
[CrossRef]

Chin. Phys. Lett. (1)

R. An, Y. Li, Y. P. Dou, Y. Fang, H. Yang and Q. H. Gong, �??Laser micro-hole drilling of soda-lime glass with femtosecond pulses,�?? Chin. Phys. Lett. 21, 2465-2468 (2004).
[CrossRef]

J. Opt. A. (1)

H.C. Guo, H. B. Jiang, Y. Fang, C. Peng, H. Yang, Y. Li, Q. H. Gong, �??Pulse duration dependence of femtosecond laser induced refractive index modulation in fused silica,�?? J. Opt. A 6, 787- 790 (2004).
[CrossRef]

J. Opt. Soc. Am. A. (1)

S. H. Wiersma, P. Török, T. D. Visser, and P. Varga, �??Comparison of different theories for focusing through a plane interface,�?? J. Opt. Soc. Am. A 14, 1482-1490 (1997).
[CrossRef]

Jpn. J. Appl. Phys. (1)

Y. Kondo, J. R. Qiu, T. Mitsuyu, K. Hirao, and T. Yoko, �??Three-dimensional microdrilling of glass by multiphoton process and chemical etching,�?? Jpn. J. Appl. Phys. 38, L1146-L1148 (1999).
[CrossRef]

Opt. Lett. (4)

Phys. Rev. A (1)

Z. X. Wu, H. B. Jiang, Q. Sun, H. Yang, and Q. H. Gong, �??Filamentation and temporal reshaping of a femtosecond pulse in fuse silica,�?? Phys. Rev. A 68,063820 (2003).
[CrossRef]

Phys. Rev. E (1)

N. Aközbek, C. M. Bowden, A. Talebpour, and S. L. Chin, �??Femtosecond pulse propagation in air: Variational analysis,�?? Phys. Rev. E 61, 4540-4549 (2000).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic setup for drilling of a 3D microchannel.

Fig. 2.
Fig. 2.

(a) Schematic configuration of a 3D microchannel; (b) side view and (c) top view of the drilled microchannel. The drilling started with A. AB in z direction, BC in x direction, and CD in y direction. The incident energy was 1.4 µJ/pulse.

Fig. 3.
Fig. 3.

Optical micrographs of multiple transverse microholes drilled at the energy of (a) 3.2, (b) 4.9, and (c) 9.3 µJ/pulse, respectively.

Fig. 4.
Fig. 4.

Difference of drilling with and without inflow of water. The F-microchannel was drilled with inflow of water. The damage track in the dashed frame was drilled without inflow of water.

Metrics