Abstract

Stochastic processes have been widely employed in order to assess the network layer performance of Optical Packet Switched (OPS) networks. In this paper we consider how the Engset traffic model may be applied to evaluate the blocking probability in asynchronous bufferless OPS networks. We present two types of the Engset traffic model, i.e. the Engset lost calls cleared traffic model and the Engset overflow traffic model. For both traffic models, the time-, call-, and traffic congestion are derived. A numerical study shows that the observed blocking probability is dependent on the choice of traffic model and performance metric.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. S. D. Personick, �??Evolving toward the Next-Generation Internet: Challenges in the Path Forward,�?? IEEE Commun. Mag. 40, 72-76 (2002).
    [CrossRef]
  2. M. J. O�??Mahony, D. Simeonidou, D. K. Hunter, A. Tzanakaki, �??The Application of Optical Packet Switching in Future Communication Networks,�?? IEEE Commun. Mag. 39, 128-135 (2001).
    [CrossRef]
  3. L. Dittmann, C. Develder, D. Chiaroni, F. Neri, F. Callegati, W. Koerber, A. Stavdas, M. Renaud, A. Rafel, J. Solé-Pareta, W. Cerroni, N. Leligou, L. Dembeck, B. Mortensen, M. Pickavet, N. Le Sauze, M. Mahony, B. Berde, G. Eilenberger, �??The European IST Project DAVID: A Viable Approach Toward Optical Packet Switching,�?? IEEE J. Select. Areas in Commun. 21, 1026-1040 (2003).
    [CrossRef]
  4. H. �?verby, �??Performance modelling of synchronous bufferless OPS networks,�?? in Proceedings of International Conference on Transparent Optical Networks, pp. 22-28, 2004.
  5. J. S. Turner, �??Terabit burst switching,�?? Journal of High Speed Networks 8, 3-16 (1999).
  6. S. Yao, B. Mukherjee, S. J. Ben Yoo, S. Dixit, �??A Unified Study of Contention-Resolution Schemes in Optical Packet-Switched Networks,�?? IEEE/OSA J. Lightwave Technol. 21, 672-683 (2003).
    [CrossRef]
  7. S. Bjørnstad, N. Stol, D. R. Hjelme, �??An Optical Packet Switch Design with Shared Electronic Buffering and Low Bit Rate Add/Drop Inputs,�?? in Proceedings of International Conference on Transparent Optical Networks, pp. 69-72, 2002.
  8. M. Nord, H. �?verby, �??Packet loss rate and jitter differentiating quality-of-service schemes for asynchronous optical packet switches,�?? OSA J. Opt. Network. 3, 866-881 (2004).
    [CrossRef]
  9. D. Gross, C. M. Harris, Fundamentals of Queueing Theory (John Wiley & Sons, 1974).
  10. L. Kleinrock, Queueing Systems Volume I: Theory (John Wiley & Sons, 1975).
  11. V. B. Iversen, Data- og teletrafikteori (Den Private Ingeniørfond, 1999).
  12. M. Zukerman, E. W. M. Wong, Z. Rosberg, G. Myoung Lee, H. L. Vu, �??Teletraffic Modeling of Optical Burst Switching,�?? in Proceedings of International Conference on Transparent Optical Networks, pp. 82-86, 2003.
    [CrossRef]
  13. Z. Rosberg, H. Le Vu, M. Zukerman, J. White, �??Performance Analyses of Optical Burst-Switching Networks,�?? IEEE J. Select. Areas Commun. 21, 1187-1197 (2003).
    [CrossRef]
  14. MATLAB, The MathWorks, Inc., <a href= "http://www.mathworks.com/">http://www.mathworks.com/</a>

IEEE Commun. Mag. (2)

S. D. Personick, �??Evolving toward the Next-Generation Internet: Challenges in the Path Forward,�?? IEEE Commun. Mag. 40, 72-76 (2002).
[CrossRef]

M. J. O�??Mahony, D. Simeonidou, D. K. Hunter, A. Tzanakaki, �??The Application of Optical Packet Switching in Future Communication Networks,�?? IEEE Commun. Mag. 39, 128-135 (2001).
[CrossRef]

IEEE J. Select. Areas Commun. (1)

Z. Rosberg, H. Le Vu, M. Zukerman, J. White, �??Performance Analyses of Optical Burst-Switching Networks,�?? IEEE J. Select. Areas Commun. 21, 1187-1197 (2003).
[CrossRef]

IEEE J. Select. Areas in Commun. (1)

L. Dittmann, C. Develder, D. Chiaroni, F. Neri, F. Callegati, W. Koerber, A. Stavdas, M. Renaud, A. Rafel, J. Solé-Pareta, W. Cerroni, N. Leligou, L. Dembeck, B. Mortensen, M. Pickavet, N. Le Sauze, M. Mahony, B. Berde, G. Eilenberger, �??The European IST Project DAVID: A Viable Approach Toward Optical Packet Switching,�?? IEEE J. Select. Areas in Commun. 21, 1026-1040 (2003).
[CrossRef]

Intl. Conf. Transp. Opt. Networks 2004 (1)

H. �?verby, �??Performance modelling of synchronous bufferless OPS networks,�?? in Proceedings of International Conference on Transparent Optical Networks, pp. 22-28, 2004.

Intl. Conf. Transpar. Opt. Networks 2003 (1)

M. Zukerman, E. W. M. Wong, Z. Rosberg, G. Myoung Lee, H. L. Vu, �??Teletraffic Modeling of Optical Burst Switching,�?? in Proceedings of International Conference on Transparent Optical Networks, pp. 82-86, 2003.
[CrossRef]

Intl. Conf. Transparent Opt. Networks 02 (1)

S. Bjørnstad, N. Stol, D. R. Hjelme, �??An Optical Packet Switch Design with Shared Electronic Buffering and Low Bit Rate Add/Drop Inputs,�?? in Proceedings of International Conference on Transparent Optical Networks, pp. 69-72, 2002.

J. Lightwave Technol. (1)

J. Opt. Network. (1)

M. Nord, H. �?verby, �??Packet loss rate and jitter differentiating quality-of-service schemes for asynchronous optical packet switches,�?? OSA J. Opt. Network. 3, 866-881 (2004).
[CrossRef]

Journal of High Speed Networks (1)

J. S. Turner, �??Terabit burst switching,�?? Journal of High Speed Networks 8, 3-16 (1999).

Other (4)

D. Gross, C. M. Harris, Fundamentals of Queueing Theory (John Wiley & Sons, 1974).

L. Kleinrock, Queueing Systems Volume I: Theory (John Wiley & Sons, 1975).

V. B. Iversen, Data- og teletrafikteori (Den Private Ingeniørfond, 1999).

MATLAB, The MathWorks, Inc., <a href= "http://www.mathworks.com/">http://www.mathworks.com/</a>

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

A generic optical packet switch with F input/output fibres, and W wavelengths per fibre.

Fig. 2.
Fig. 2.

A state diagram of an input wavelength, which changes between two states. In the idle state, no packets are arriving on the input wavelength, while in the busy state, the input wavelength is transmitting a packet to the tagged output port. The holding times are negative exponential distributed.

Fig. 3.
Fig. 3.

State transition diagram of the Engset LCC. The states denote the number of busy wavelengths at a tagged output port. The tagged output port is congested in the red state.

Fig. 4.
Fig. 4.

State transition diagram of the Engset OFL. State (i,j) denotes the number of output wavelengths at the tagged output port currently busy (i), and the number of input wavelengths transmitting a packet that has been dropped (j). The tagged output port is congested in the red states.

Fig. 5.
Fig. 5.

The blocking probability as a function of the normalized system load (A) at a tagged output wavelength. F=4.

Fig. 6.
Fig. 6.

The blocking probability as a function of the normalized system load (A) at a tagged output fibre. F=4, W=16.

Fig. 7.
Fig. 7.

The blocking probability as a function of the number of input/output fibres (F) at a tagged output wavelength. A=0.8.

Fig. 8.
Fig. 8.

The blocking probability as a function of the number of input/output fibres (F) at a tagged output fibre. A=0.8, W=16.

Tables (1)

Tables Icon

Table 1. Overview of the number of input/output wavelengths in the NWC and FOWC scenario.

Equations (20)

Equations on this page are rendered with MathJax. Learn more.

Z = σ 2 A T = S α ( 1 α ) S α
Z = 1 A T S = 1 A N S = 1 A F
Z F = A F 2 > 0
2 Z F 2 = 2 A F 3 < 0
Q j ( s j ) λ = Q j + 1 ( j + 1 ) μ ( 0 j N 1 )
Q j = S j β j k = 0 N S k β k
E L C C ( N , S , β ) = Q N
B L C C ( N , S , β ) = Q N ( S N ) λ j = 0 N Q j ( S j ) λ = E L C C ( N , S 1 , β )
C L C C ( N , S , β ) = A Y A = S α j = 0 N j Q j S α = F 1 F E L C C ( N , S , β )
u ( k , L ) = { 0 k = L 1 k L
Q i , j ( ( i + j ) μ + ( S i j ) λ ) =
Q i 1 , j ( ( S i j + 1 ) λ ) · u ( N i , N ) +
Q i + 1 , j ( i + 1 ) μ · u ( i , N ) +
Q i , j 1 ( S N j + 1 ) λ · ( 1 u ( i , N ) ) u ( S N j , S N ) +
Q i , j + 1 ( j + 1 ) μ · u ( j , S N )
( 0 i N ) ( 0 j S N )
i = 0 N j = 0 S N Q i , j = 1
E O F L ( N , S , β ) = j = 0 S N Q N , j
B O F L ( N , S , β ) = j = 0 S N Q N , j ( S N j ) λ i = 0 N j = 0 S N Q i , j ( S i j ) λ
C O F L ( N , S , β ) = A Y A = S α i = 0 N j = 0 S N i Q i , j S α

Metrics