Abstract

We studied coupling phenomena between surface plasmons and electromagnetic waves in the microwave spectrum using circular apertures surrounded by array of grooves. We first present experimental and theoretical results of enhanced microwave transmission though a subwavelength circular aperture with concentric periodic grooves around the surface plasmon resonance frequency. This is followed by transmission studies through circular annular apertures and circular annular apertures surrounded by concentric periodic grooves. We demonstrated that 145 fold enhancement factor could be obtained with a subwavelength circular annular aperture surrounded by concentric periodic grooves. Our results show that, high transmission from a circular annular aperture with grooves is assisted by the guided mode of the coaxial waveguide and coupling to the surface plasmons.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, Berlin1988).
  2. Y. Teng and E. A. Stern, “Plasma Radiation from Metal Grating Surfaces,” Phys. Rev. Lett. 19, 511–514 (1967).
    [Crossref]
  3. T. Thio, H.J. Lezec, T.W. Ebessen, K. M. Pellerin, G. D. Lewen, A. Nahata, and R. A. Linke, “Giant optical transmission of sub-wavelength apertures: physics and applications,” Nanotechnology 13, 429–432 (2002).
    [Crossref]
  4. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P.A. Wolf, “Extraordinary optical transmission through subwavelength hole arrays,” Nature 39, 667–669 (1998).
    [Crossref]
  5. U. Schröter and D. Heitmann, “Surface-plasmon-enhanced transmission through metallic gratings,” Phys. Rev. B 58, 15419–21 (1999).
    [Crossref]
  6. J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission Resonances on Metallic Gratings with Very Narrow Slits,” Phys. Rev. Lett. 83, 2845–48 (1999).
    [Crossref]
  7. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming Light from a Subwavelength Aperture,” Science 297, 820–22 (2002).
    [Crossref] [PubMed]
  8. F. J. Garcia-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martin-Moreno, “Multiple Paths to Enhance Optical Transmission through a Single Subwavelength Slit,” Phys. Rev. Lett. 90, 213901 (2003).
    [Crossref] [PubMed]
  9. S. S. Akarca-Biyikli, I. Bulu, and E. Ozbay, “Enhanced transmission of microwave radiation in one-dimensional metallic gratings with subwavelength aperture,” Appl. Phys. Lett. 85, 1098 (2004).
    [Crossref]
  10. A. P. Hibbins, J. R. Sambles, and C. R. Lawrence, “Grating-coupled surface plasmons at microwave frequencies,” J. Appl. Phys. 86 (4), 1791 (1999).
    [Crossref]
  11. E. Popov, M. Neviere, S. Enoch, and R. Reinisch, “Theory of light transmission through subwavelength periodic hole arrays,” Phys. Rev. B 62, 16100–08 (2000).
    [Crossref]
  12. D. E. Grupp, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, and T. Thio, “Crucial role of metal surface in enhanced transmission through subwavelength apertures,” Appl. Phys. Lett. 77, 1569–71 (2000).
    [Crossref]
  13. L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of Extraordinary Optical Transmission through Subwavelength Hole Arrays,” Phys. Rev. Lett. 86, 1114–17 (2001).
    [Crossref] [PubMed]
  14. T. Thio, K. M. Pellerin, R. A. Linke, H. J. Lezec, and T. W. Ebbesen, “Enhanced light transmission through a single subwavelength aperture,” Opt. Lett. 26, 1972 (2001).
    [Crossref]
  15. M. J. Lockyear, A. P. Hibbins, J. R. Sambles, and C. R. Lawrence, “Surface-topography-induced enhanced transmission and directivity of microwave radiation through a subwavelength circular metal aperture,” Appl. Phys. Lett. 84, 2040 (2004).
    [Crossref]
  16. F. I. Baida and D. Van Labeke, “Light transmission by subwavelength annular aperture arrays in metallic films,” Opt. Comm. 209, 17–22 (2002).
    [Crossref]
  17. F. I. Baida, D. Van Labeke, G. Granet, A. Moreau, and A. Belkhir, “Origin of the super-enhanced light transmission through a 2-D metallic annular aperture array: a study of photonic bands,” Appl. Phys. B 79, 1–8 (2004).
    [Crossref]
  18. F. I. Baida, D. Van Labeke, and B. Guzial, “Enhanced confined light trasmission by single subwavelength apertures in metallic films,” Appl. Opt. 42 (34), 6811 (2003).
    [Crossref] [PubMed]
  19. H. F. Ghaemi, Tineke Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779 (1998).
    [Crossref]

2004 (3)

S. S. Akarca-Biyikli, I. Bulu, and E. Ozbay, “Enhanced transmission of microwave radiation in one-dimensional metallic gratings with subwavelength aperture,” Appl. Phys. Lett. 85, 1098 (2004).
[Crossref]

M. J. Lockyear, A. P. Hibbins, J. R. Sambles, and C. R. Lawrence, “Surface-topography-induced enhanced transmission and directivity of microwave radiation through a subwavelength circular metal aperture,” Appl. Phys. Lett. 84, 2040 (2004).
[Crossref]

F. I. Baida, D. Van Labeke, G. Granet, A. Moreau, and A. Belkhir, “Origin of the super-enhanced light transmission through a 2-D metallic annular aperture array: a study of photonic bands,” Appl. Phys. B 79, 1–8 (2004).
[Crossref]

2003 (2)

F. I. Baida, D. Van Labeke, and B. Guzial, “Enhanced confined light trasmission by single subwavelength apertures in metallic films,” Appl. Opt. 42 (34), 6811 (2003).
[Crossref] [PubMed]

F. J. Garcia-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martin-Moreno, “Multiple Paths to Enhance Optical Transmission through a Single Subwavelength Slit,” Phys. Rev. Lett. 90, 213901 (2003).
[Crossref] [PubMed]

2002 (3)

F. I. Baida and D. Van Labeke, “Light transmission by subwavelength annular aperture arrays in metallic films,” Opt. Comm. 209, 17–22 (2002).
[Crossref]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming Light from a Subwavelength Aperture,” Science 297, 820–22 (2002).
[Crossref] [PubMed]

T. Thio, H.J. Lezec, T.W. Ebessen, K. M. Pellerin, G. D. Lewen, A. Nahata, and R. A. Linke, “Giant optical transmission of sub-wavelength apertures: physics and applications,” Nanotechnology 13, 429–432 (2002).
[Crossref]

2001 (2)

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of Extraordinary Optical Transmission through Subwavelength Hole Arrays,” Phys. Rev. Lett. 86, 1114–17 (2001).
[Crossref] [PubMed]

T. Thio, K. M. Pellerin, R. A. Linke, H. J. Lezec, and T. W. Ebbesen, “Enhanced light transmission through a single subwavelength aperture,” Opt. Lett. 26, 1972 (2001).
[Crossref]

2000 (2)

E. Popov, M. Neviere, S. Enoch, and R. Reinisch, “Theory of light transmission through subwavelength periodic hole arrays,” Phys. Rev. B 62, 16100–08 (2000).
[Crossref]

D. E. Grupp, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, and T. Thio, “Crucial role of metal surface in enhanced transmission through subwavelength apertures,” Appl. Phys. Lett. 77, 1569–71 (2000).
[Crossref]

1999 (3)

U. Schröter and D. Heitmann, “Surface-plasmon-enhanced transmission through metallic gratings,” Phys. Rev. B 58, 15419–21 (1999).
[Crossref]

J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission Resonances on Metallic Gratings with Very Narrow Slits,” Phys. Rev. Lett. 83, 2845–48 (1999).
[Crossref]

A. P. Hibbins, J. R. Sambles, and C. R. Lawrence, “Grating-coupled surface plasmons at microwave frequencies,” J. Appl. Phys. 86 (4), 1791 (1999).
[Crossref]

1998 (2)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P.A. Wolf, “Extraordinary optical transmission through subwavelength hole arrays,” Nature 39, 667–669 (1998).
[Crossref]

H. F. Ghaemi, Tineke Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779 (1998).
[Crossref]

1967 (1)

Y. Teng and E. A. Stern, “Plasma Radiation from Metal Grating Surfaces,” Phys. Rev. Lett. 19, 511–514 (1967).
[Crossref]

Akarca-Biyikli, S. S.

S. S. Akarca-Biyikli, I. Bulu, and E. Ozbay, “Enhanced transmission of microwave radiation in one-dimensional metallic gratings with subwavelength aperture,” Appl. Phys. Lett. 85, 1098 (2004).
[Crossref]

Baida, F. I.

F. I. Baida, D. Van Labeke, G. Granet, A. Moreau, and A. Belkhir, “Origin of the super-enhanced light transmission through a 2-D metallic annular aperture array: a study of photonic bands,” Appl. Phys. B 79, 1–8 (2004).
[Crossref]

F. I. Baida, D. Van Labeke, and B. Guzial, “Enhanced confined light trasmission by single subwavelength apertures in metallic films,” Appl. Opt. 42 (34), 6811 (2003).
[Crossref] [PubMed]

F. I. Baida and D. Van Labeke, “Light transmission by subwavelength annular aperture arrays in metallic films,” Opt. Comm. 209, 17–22 (2002).
[Crossref]

Belkhir, A.

F. I. Baida, D. Van Labeke, G. Granet, A. Moreau, and A. Belkhir, “Origin of the super-enhanced light transmission through a 2-D metallic annular aperture array: a study of photonic bands,” Appl. Phys. B 79, 1–8 (2004).
[Crossref]

Bulu, I.

S. S. Akarca-Biyikli, I. Bulu, and E. Ozbay, “Enhanced transmission of microwave radiation in one-dimensional metallic gratings with subwavelength aperture,” Appl. Phys. Lett. 85, 1098 (2004).
[Crossref]

Degiron, A.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming Light from a Subwavelength Aperture,” Science 297, 820–22 (2002).
[Crossref] [PubMed]

Devaux, E.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming Light from a Subwavelength Aperture,” Science 297, 820–22 (2002).
[Crossref] [PubMed]

Ebbesen, T. W.

F. J. Garcia-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martin-Moreno, “Multiple Paths to Enhance Optical Transmission through a Single Subwavelength Slit,” Phys. Rev. Lett. 90, 213901 (2003).
[Crossref] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming Light from a Subwavelength Aperture,” Science 297, 820–22 (2002).
[Crossref] [PubMed]

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of Extraordinary Optical Transmission through Subwavelength Hole Arrays,” Phys. Rev. Lett. 86, 1114–17 (2001).
[Crossref] [PubMed]

T. Thio, K. M. Pellerin, R. A. Linke, H. J. Lezec, and T. W. Ebbesen, “Enhanced light transmission through a single subwavelength aperture,” Opt. Lett. 26, 1972 (2001).
[Crossref]

D. E. Grupp, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, and T. Thio, “Crucial role of metal surface in enhanced transmission through subwavelength apertures,” Appl. Phys. Lett. 77, 1569–71 (2000).
[Crossref]

H. F. Ghaemi, Tineke Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779 (1998).
[Crossref]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P.A. Wolf, “Extraordinary optical transmission through subwavelength hole arrays,” Nature 39, 667–669 (1998).
[Crossref]

Ebessen, T.W.

T. Thio, H.J. Lezec, T.W. Ebessen, K. M. Pellerin, G. D. Lewen, A. Nahata, and R. A. Linke, “Giant optical transmission of sub-wavelength apertures: physics and applications,” Nanotechnology 13, 429–432 (2002).
[Crossref]

Enoch, S.

E. Popov, M. Neviere, S. Enoch, and R. Reinisch, “Theory of light transmission through subwavelength periodic hole arrays,” Phys. Rev. B 62, 16100–08 (2000).
[Crossref]

Garcia-Vidal, F. J.

F. J. Garcia-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martin-Moreno, “Multiple Paths to Enhance Optical Transmission through a Single Subwavelength Slit,” Phys. Rev. Lett. 90, 213901 (2003).
[Crossref] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming Light from a Subwavelength Aperture,” Science 297, 820–22 (2002).
[Crossref] [PubMed]

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of Extraordinary Optical Transmission through Subwavelength Hole Arrays,” Phys. Rev. Lett. 86, 1114–17 (2001).
[Crossref] [PubMed]

J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission Resonances on Metallic Gratings with Very Narrow Slits,” Phys. Rev. Lett. 83, 2845–48 (1999).
[Crossref]

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P.A. Wolf, “Extraordinary optical transmission through subwavelength hole arrays,” Nature 39, 667–669 (1998).
[Crossref]

H. F. Ghaemi, Tineke Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779 (1998).
[Crossref]

Granet, G.

F. I. Baida, D. Van Labeke, G. Granet, A. Moreau, and A. Belkhir, “Origin of the super-enhanced light transmission through a 2-D metallic annular aperture array: a study of photonic bands,” Appl. Phys. B 79, 1–8 (2004).
[Crossref]

Grupp, D. E.

D. E. Grupp, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, and T. Thio, “Crucial role of metal surface in enhanced transmission through subwavelength apertures,” Appl. Phys. Lett. 77, 1569–71 (2000).
[Crossref]

H. F. Ghaemi, Tineke Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779 (1998).
[Crossref]

Guzial, B.

Heitmann, D.

U. Schröter and D. Heitmann, “Surface-plasmon-enhanced transmission through metallic gratings,” Phys. Rev. B 58, 15419–21 (1999).
[Crossref]

Hibbins, A. P.

M. J. Lockyear, A. P. Hibbins, J. R. Sambles, and C. R. Lawrence, “Surface-topography-induced enhanced transmission and directivity of microwave radiation through a subwavelength circular metal aperture,” Appl. Phys. Lett. 84, 2040 (2004).
[Crossref]

A. P. Hibbins, J. R. Sambles, and C. R. Lawrence, “Grating-coupled surface plasmons at microwave frequencies,” J. Appl. Phys. 86 (4), 1791 (1999).
[Crossref]

Lawrence, C. R.

M. J. Lockyear, A. P. Hibbins, J. R. Sambles, and C. R. Lawrence, “Surface-topography-induced enhanced transmission and directivity of microwave radiation through a subwavelength circular metal aperture,” Appl. Phys. Lett. 84, 2040 (2004).
[Crossref]

A. P. Hibbins, J. R. Sambles, and C. R. Lawrence, “Grating-coupled surface plasmons at microwave frequencies,” J. Appl. Phys. 86 (4), 1791 (1999).
[Crossref]

Lewen, G. D.

T. Thio, H.J. Lezec, T.W. Ebessen, K. M. Pellerin, G. D. Lewen, A. Nahata, and R. A. Linke, “Giant optical transmission of sub-wavelength apertures: physics and applications,” Nanotechnology 13, 429–432 (2002).
[Crossref]

Lezec, H. J.

F. J. Garcia-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martin-Moreno, “Multiple Paths to Enhance Optical Transmission through a Single Subwavelength Slit,” Phys. Rev. Lett. 90, 213901 (2003).
[Crossref] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming Light from a Subwavelength Aperture,” Science 297, 820–22 (2002).
[Crossref] [PubMed]

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of Extraordinary Optical Transmission through Subwavelength Hole Arrays,” Phys. Rev. Lett. 86, 1114–17 (2001).
[Crossref] [PubMed]

T. Thio, K. M. Pellerin, R. A. Linke, H. J. Lezec, and T. W. Ebbesen, “Enhanced light transmission through a single subwavelength aperture,” Opt. Lett. 26, 1972 (2001).
[Crossref]

D. E. Grupp, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, and T. Thio, “Crucial role of metal surface in enhanced transmission through subwavelength apertures,” Appl. Phys. Lett. 77, 1569–71 (2000).
[Crossref]

H. F. Ghaemi, Tineke Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779 (1998).
[Crossref]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P.A. Wolf, “Extraordinary optical transmission through subwavelength hole arrays,” Nature 39, 667–669 (1998).
[Crossref]

Lezec, H.J.

T. Thio, H.J. Lezec, T.W. Ebessen, K. M. Pellerin, G. D. Lewen, A. Nahata, and R. A. Linke, “Giant optical transmission of sub-wavelength apertures: physics and applications,” Nanotechnology 13, 429–432 (2002).
[Crossref]

Linke, R. A.

T. Thio, H.J. Lezec, T.W. Ebessen, K. M. Pellerin, G. D. Lewen, A. Nahata, and R. A. Linke, “Giant optical transmission of sub-wavelength apertures: physics and applications,” Nanotechnology 13, 429–432 (2002).
[Crossref]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming Light from a Subwavelength Aperture,” Science 297, 820–22 (2002).
[Crossref] [PubMed]

T. Thio, K. M. Pellerin, R. A. Linke, H. J. Lezec, and T. W. Ebbesen, “Enhanced light transmission through a single subwavelength aperture,” Opt. Lett. 26, 1972 (2001).
[Crossref]

Lockyear, M. J.

M. J. Lockyear, A. P. Hibbins, J. R. Sambles, and C. R. Lawrence, “Surface-topography-induced enhanced transmission and directivity of microwave radiation through a subwavelength circular metal aperture,” Appl. Phys. Lett. 84, 2040 (2004).
[Crossref]

Martin-Moreno, L.

F. J. Garcia-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martin-Moreno, “Multiple Paths to Enhance Optical Transmission through a Single Subwavelength Slit,” Phys. Rev. Lett. 90, 213901 (2003).
[Crossref] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming Light from a Subwavelength Aperture,” Science 297, 820–22 (2002).
[Crossref] [PubMed]

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of Extraordinary Optical Transmission through Subwavelength Hole Arrays,” Phys. Rev. Lett. 86, 1114–17 (2001).
[Crossref] [PubMed]

Moreau, A.

F. I. Baida, D. Van Labeke, G. Granet, A. Moreau, and A. Belkhir, “Origin of the super-enhanced light transmission through a 2-D metallic annular aperture array: a study of photonic bands,” Appl. Phys. B 79, 1–8 (2004).
[Crossref]

Nahata, A.

T. Thio, H.J. Lezec, T.W. Ebessen, K. M. Pellerin, G. D. Lewen, A. Nahata, and R. A. Linke, “Giant optical transmission of sub-wavelength apertures: physics and applications,” Nanotechnology 13, 429–432 (2002).
[Crossref]

Neviere, M.

E. Popov, M. Neviere, S. Enoch, and R. Reinisch, “Theory of light transmission through subwavelength periodic hole arrays,” Phys. Rev. B 62, 16100–08 (2000).
[Crossref]

Ozbay, E.

S. S. Akarca-Biyikli, I. Bulu, and E. Ozbay, “Enhanced transmission of microwave radiation in one-dimensional metallic gratings with subwavelength aperture,” Appl. Phys. Lett. 85, 1098 (2004).
[Crossref]

Pellerin, K. M.

T. Thio, H.J. Lezec, T.W. Ebessen, K. M. Pellerin, G. D. Lewen, A. Nahata, and R. A. Linke, “Giant optical transmission of sub-wavelength apertures: physics and applications,” Nanotechnology 13, 429–432 (2002).
[Crossref]

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of Extraordinary Optical Transmission through Subwavelength Hole Arrays,” Phys. Rev. Lett. 86, 1114–17 (2001).
[Crossref] [PubMed]

T. Thio, K. M. Pellerin, R. A. Linke, H. J. Lezec, and T. W. Ebbesen, “Enhanced light transmission through a single subwavelength aperture,” Opt. Lett. 26, 1972 (2001).
[Crossref]

D. E. Grupp, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, and T. Thio, “Crucial role of metal surface in enhanced transmission through subwavelength apertures,” Appl. Phys. Lett. 77, 1569–71 (2000).
[Crossref]

Pendry, J. B.

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of Extraordinary Optical Transmission through Subwavelength Hole Arrays,” Phys. Rev. Lett. 86, 1114–17 (2001).
[Crossref] [PubMed]

J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission Resonances on Metallic Gratings with Very Narrow Slits,” Phys. Rev. Lett. 83, 2845–48 (1999).
[Crossref]

Popov, E.

E. Popov, M. Neviere, S. Enoch, and R. Reinisch, “Theory of light transmission through subwavelength periodic hole arrays,” Phys. Rev. B 62, 16100–08 (2000).
[Crossref]

Porto, J. A.

J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission Resonances on Metallic Gratings with Very Narrow Slits,” Phys. Rev. Lett. 83, 2845–48 (1999).
[Crossref]

Raether, H.

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, Berlin1988).

Reinisch, R.

E. Popov, M. Neviere, S. Enoch, and R. Reinisch, “Theory of light transmission through subwavelength periodic hole arrays,” Phys. Rev. B 62, 16100–08 (2000).
[Crossref]

Sambles, J. R.

M. J. Lockyear, A. P. Hibbins, J. R. Sambles, and C. R. Lawrence, “Surface-topography-induced enhanced transmission and directivity of microwave radiation through a subwavelength circular metal aperture,” Appl. Phys. Lett. 84, 2040 (2004).
[Crossref]

A. P. Hibbins, J. R. Sambles, and C. R. Lawrence, “Grating-coupled surface plasmons at microwave frequencies,” J. Appl. Phys. 86 (4), 1791 (1999).
[Crossref]

Schröter, U.

U. Schröter and D. Heitmann, “Surface-plasmon-enhanced transmission through metallic gratings,” Phys. Rev. B 58, 15419–21 (1999).
[Crossref]

Stern, E. A.

Y. Teng and E. A. Stern, “Plasma Radiation from Metal Grating Surfaces,” Phys. Rev. Lett. 19, 511–514 (1967).
[Crossref]

Teng, Y.

Y. Teng and E. A. Stern, “Plasma Radiation from Metal Grating Surfaces,” Phys. Rev. Lett. 19, 511–514 (1967).
[Crossref]

Thio, T.

T. Thio, H.J. Lezec, T.W. Ebessen, K. M. Pellerin, G. D. Lewen, A. Nahata, and R. A. Linke, “Giant optical transmission of sub-wavelength apertures: physics and applications,” Nanotechnology 13, 429–432 (2002).
[Crossref]

T. Thio, K. M. Pellerin, R. A. Linke, H. J. Lezec, and T. W. Ebbesen, “Enhanced light transmission through a single subwavelength aperture,” Opt. Lett. 26, 1972 (2001).
[Crossref]

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of Extraordinary Optical Transmission through Subwavelength Hole Arrays,” Phys. Rev. Lett. 86, 1114–17 (2001).
[Crossref] [PubMed]

D. E. Grupp, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, and T. Thio, “Crucial role of metal surface in enhanced transmission through subwavelength apertures,” Appl. Phys. Lett. 77, 1569–71 (2000).
[Crossref]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P.A. Wolf, “Extraordinary optical transmission through subwavelength hole arrays,” Nature 39, 667–669 (1998).
[Crossref]

Thio, Tineke

H. F. Ghaemi, Tineke Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779 (1998).
[Crossref]

Van Labeke, D.

F. I. Baida, D. Van Labeke, G. Granet, A. Moreau, and A. Belkhir, “Origin of the super-enhanced light transmission through a 2-D metallic annular aperture array: a study of photonic bands,” Appl. Phys. B 79, 1–8 (2004).
[Crossref]

F. I. Baida, D. Van Labeke, and B. Guzial, “Enhanced confined light trasmission by single subwavelength apertures in metallic films,” Appl. Opt. 42 (34), 6811 (2003).
[Crossref] [PubMed]

F. I. Baida and D. Van Labeke, “Light transmission by subwavelength annular aperture arrays in metallic films,” Opt. Comm. 209, 17–22 (2002).
[Crossref]

Wolf, P.A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P.A. Wolf, “Extraordinary optical transmission through subwavelength hole arrays,” Nature 39, 667–669 (1998).
[Crossref]

Appl. Opt. (1)

Appl. Phys. B (1)

F. I. Baida, D. Van Labeke, G. Granet, A. Moreau, and A. Belkhir, “Origin of the super-enhanced light transmission through a 2-D metallic annular aperture array: a study of photonic bands,” Appl. Phys. B 79, 1–8 (2004).
[Crossref]

Appl. Phys. Lett. (3)

M. J. Lockyear, A. P. Hibbins, J. R. Sambles, and C. R. Lawrence, “Surface-topography-induced enhanced transmission and directivity of microwave radiation through a subwavelength circular metal aperture,” Appl. Phys. Lett. 84, 2040 (2004).
[Crossref]

D. E. Grupp, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, and T. Thio, “Crucial role of metal surface in enhanced transmission through subwavelength apertures,” Appl. Phys. Lett. 77, 1569–71 (2000).
[Crossref]

S. S. Akarca-Biyikli, I. Bulu, and E. Ozbay, “Enhanced transmission of microwave radiation in one-dimensional metallic gratings with subwavelength aperture,” Appl. Phys. Lett. 85, 1098 (2004).
[Crossref]

J. Appl. Phys. (1)

A. P. Hibbins, J. R. Sambles, and C. R. Lawrence, “Grating-coupled surface plasmons at microwave frequencies,” J. Appl. Phys. 86 (4), 1791 (1999).
[Crossref]

Nanotechnology (1)

T. Thio, H.J. Lezec, T.W. Ebessen, K. M. Pellerin, G. D. Lewen, A. Nahata, and R. A. Linke, “Giant optical transmission of sub-wavelength apertures: physics and applications,” Nanotechnology 13, 429–432 (2002).
[Crossref]

Nature (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P.A. Wolf, “Extraordinary optical transmission through subwavelength hole arrays,” Nature 39, 667–669 (1998).
[Crossref]

Opt. Comm. (1)

F. I. Baida and D. Van Labeke, “Light transmission by subwavelength annular aperture arrays in metallic films,” Opt. Comm. 209, 17–22 (2002).
[Crossref]

Opt. Lett. (1)

Phys. Rev. B (3)

H. F. Ghaemi, Tineke Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779 (1998).
[Crossref]

U. Schröter and D. Heitmann, “Surface-plasmon-enhanced transmission through metallic gratings,” Phys. Rev. B 58, 15419–21 (1999).
[Crossref]

E. Popov, M. Neviere, S. Enoch, and R. Reinisch, “Theory of light transmission through subwavelength periodic hole arrays,” Phys. Rev. B 62, 16100–08 (2000).
[Crossref]

Phys. Rev. Lett. (4)

Y. Teng and E. A. Stern, “Plasma Radiation from Metal Grating Surfaces,” Phys. Rev. Lett. 19, 511–514 (1967).
[Crossref]

J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission Resonances on Metallic Gratings with Very Narrow Slits,” Phys. Rev. Lett. 83, 2845–48 (1999).
[Crossref]

F. J. Garcia-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martin-Moreno, “Multiple Paths to Enhance Optical Transmission through a Single Subwavelength Slit,” Phys. Rev. Lett. 90, 213901 (2003).
[Crossref] [PubMed]

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of Extraordinary Optical Transmission through Subwavelength Hole Arrays,” Phys. Rev. Lett. 86, 1114–17 (2001).
[Crossref] [PubMed]

Science (1)

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming Light from a Subwavelength Aperture,” Science 297, 820–22 (2002).
[Crossref] [PubMed]

Other (1)

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, Berlin1988).

Supplementary Material (1)

» Media 1: GIF (509 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Schematics of the four studied structures with t=8 mm, a=8 mm, p=16 mm, w=3.2 mm and top view of Sample 2.

Fig. 2.
Fig. 2.

Calculated and measured transmission results for a) Sample 1 and b) Sample 2.

Fig. 3.
Fig. 3.

a) Transmission results for Sample 1 and 2. b) Enhancement factor obtained with Sample 2.

Fig. 4.
Fig. 4.

Electric field distribution of Sample 3 at resonance frequency (13.2 GHz). Red indicates the maximum and blue refers to the minimum.

Fig. 5.
Fig. 5.

a) Calculated and measured transmission results for Sample 3. b) Transmission results for Sample 2 and 3.

Fig. 6.
Fig. 6.

a) Calculated and measured transmission results for Sample 4. b) Enhancement factor obtained with Sample 4.

Fig. 7.
Fig. 7.

Electric field distribution on the surface of Sample 4 at resonance frequency (12.9 GHz). Red indicates the maximum and blue indicates the minimum. Phase of the field changes by 5 degrees. (GIF-video file, 509 KB)

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

k s p = k 0 + N k g
k s p = k o ε m ε d ε m + ε d
k z 2 = 4 π 2 λ 2 4 π 2 λ c 2
λ c T E m , 1 = π ( a + b ) m

Metrics