Abstract

Near infrared broadband emission characteristics of bismuth-doped aluminophosphate glass have been investigated. Broad infrared emissions peaking at 1210nm, 1173nm and 1300nm were observed when the glass was pumped by 405nm laser diode (LD), 514nm Ar+ laser and 808nm LD, respectively. The full widths at half maximum (FWHMs) are 235nm, 207nm and 300nm for the emissions at 1210nm, 1173nm and 1300nm, respectively. Based on the energy matching conditions, it is suggested that the infrared emission may be ascribed to 3P13P0 transition of Bi+. The broadband infrared luminescent characteristics of the glasses indicate that they are promising for broadband optical fiber amplifiers and tunable lasers.

© 2005 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Infrared broadband emission of bismuth-doped barium-aluminum-borate glasses

Xian-geng Meng, Jian-rong Qiu, Ming-ying Peng, Dan-ping Chen, Quan-zhong Zhao, Xiong-wei Jiang, and Cong-shan Zhu
Opt. Express 13(5) 1635-1642 (2005)

Advanced bismuth-doped lead-germanate glass for broadband optical gain devices

M. Hughes, T. Suzuki, and Y. Ohishi
J. Opt. Soc. Am. B 25(8) 1380-1386 (2008)

Superbroadband 1310 nm emission from bismuth and tantalum codoped germanium oxide glasses

Mingying Peng, Jianrong Qiu, Danping Chen, Xiangeng Meng, and Congshan Zhu
Opt. Lett. 30(18) 2433-2435 (2005)

References

  • View by:
  • |
  • |
  • |

  1. A. Mori, Y. Ohishi, and S. Sudo, “Erbium-doped tellurite glass fibre laser and amplifier,” Electron. Lett. 33, 863–864 (1997)
    [Crossref]
  2. G. P. Agrawal, Nonlinear Fiber Optics, 2nd edition (Academic, San Diego, 1995)
  3. Y. Fujimoto and M. Nakatsuka, “Infrared luminescence from bismuth-doped silica glass,” Jpn. J. App. Phys. 40, L279–L281 (2001)
    [Crossref]
  4. Y. Fujimoto and M. Nakatsuka, “Optical amplification in bismuth-doped silica glass,” App. Phys. Lett. 82, 3325–3326 (2003)
    [Crossref]
  5. M. Peng, J. Qiu, D. Chen, X. Meng, L. Yang, X. Jiang, and C. Zhu, “Bismuth- and aluminum co-doped germanium oxide glasses for super-broadband optical amplification,” Opt. Lett. 29, 1998–2000 (2004)
    [Crossref] [PubMed]
  6. T. Sazuki and Y. Ohishi, “Broadband 1400nm emission from Ni2+ in zink-alumino-silicate glass,” Appl. Phys. Lett. 84, 3804–3806 (2004)
    [Crossref]
  7. I. T. Sorokina, S. Naumov, E. Sorokin, E. Wintner, and A. V. Shestakov, “Directly diode-pumped tunable continuous-wave room-temperature Cr4+: YAG laser,” Opt. Lett. 24, 1578–1580 (1999)
    [Crossref]
  8. N. Sugimoto, H. Kanbara, S. Fujiwara, K. Tanaka, and K. Hirao, “Ultrafast response of third-order optical nonlinearity in glasses containing Bi2O3,” Opt. Lett. 21, 1637–1639 (1996)
    [Crossref] [PubMed]
  9. G. Blasse and A. Bril, “Investigations on Bi3+-activated phosphors,” J. Chem. Phys. 48, 217–222 (1968)
    [Crossref]
  10. M. J. Weber and R. R. Monchamp, “Luminescence of Bi4Ge3O12 : spectral and decay properties,” J. Appl. Phys. 44, 5495–5499 (1973)
    [Crossref]
  11. R. B. Lauer, “Photoluminescence in Bi12SiO20 and Bi12GeO20,” Appl. Phys. Lett. 17, 178–179 (1970)
    [Crossref]
  12. G. Blasse, “Unusual bismuth luminescence in strontium tetraborate (SrB4O7: Bi),” J. Phys. Chem. Solids 55, 171–174 (1994)
    [Crossref]
  13. A. M. Strivastava, “Luminescence of divalent bismuth in M2+BPO5 (M2+=Ba2+, Sr2+ and Ca2+),” J. Lumin. 78, 239–243 (1998)
    [Crossref]
  14. M. B. Volf, Chemical approach to glass, Vol. 7 of Glass Science and Technology Series (Elsevier, New York, 1984) 406–410, 465–469
  15. X. Meng, Photon Craft Project, Shanghai Institute of Optics and Fine Mechanics, Graduate School of Chinese Academy of Sciences and Japan Science and Technology Agency, Shanghai 201800, China, and M. Peng, J. Qiu, D. Chen, X. Jiang and C. Zhu are preparing a manuscript to be called “Infrared broadband emission of bismuth-doped barium-aluminum-borate glasses.”
  16. J. A. Duffy, “Redox equilibria of glass,” J. Non-Cryst. Solids 196, 45–50 (1996)
    [Crossref]

2004 (2)

2003 (1)

Y. Fujimoto and M. Nakatsuka, “Optical amplification in bismuth-doped silica glass,” App. Phys. Lett. 82, 3325–3326 (2003)
[Crossref]

2001 (1)

Y. Fujimoto and M. Nakatsuka, “Infrared luminescence from bismuth-doped silica glass,” Jpn. J. App. Phys. 40, L279–L281 (2001)
[Crossref]

1999 (1)

1998 (1)

A. M. Strivastava, “Luminescence of divalent bismuth in M2+BPO5 (M2+=Ba2+, Sr2+ and Ca2+),” J. Lumin. 78, 239–243 (1998)
[Crossref]

1997 (1)

A. Mori, Y. Ohishi, and S. Sudo, “Erbium-doped tellurite glass fibre laser and amplifier,” Electron. Lett. 33, 863–864 (1997)
[Crossref]

1996 (2)

1994 (1)

G. Blasse, “Unusual bismuth luminescence in strontium tetraborate (SrB4O7: Bi),” J. Phys. Chem. Solids 55, 171–174 (1994)
[Crossref]

1973 (1)

M. J. Weber and R. R. Monchamp, “Luminescence of Bi4Ge3O12 : spectral and decay properties,” J. Appl. Phys. 44, 5495–5499 (1973)
[Crossref]

1970 (1)

R. B. Lauer, “Photoluminescence in Bi12SiO20 and Bi12GeO20,” Appl. Phys. Lett. 17, 178–179 (1970)
[Crossref]

1968 (1)

G. Blasse and A. Bril, “Investigations on Bi3+-activated phosphors,” J. Chem. Phys. 48, 217–222 (1968)
[Crossref]

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics, 2nd edition (Academic, San Diego, 1995)

Blasse, G.

G. Blasse, “Unusual bismuth luminescence in strontium tetraborate (SrB4O7: Bi),” J. Phys. Chem. Solids 55, 171–174 (1994)
[Crossref]

G. Blasse and A. Bril, “Investigations on Bi3+-activated phosphors,” J. Chem. Phys. 48, 217–222 (1968)
[Crossref]

Bril, A.

G. Blasse and A. Bril, “Investigations on Bi3+-activated phosphors,” J. Chem. Phys. 48, 217–222 (1968)
[Crossref]

Chen, D.

Duffy, J. A.

J. A. Duffy, “Redox equilibria of glass,” J. Non-Cryst. Solids 196, 45–50 (1996)
[Crossref]

Fujimoto, Y.

Y. Fujimoto and M. Nakatsuka, “Optical amplification in bismuth-doped silica glass,” App. Phys. Lett. 82, 3325–3326 (2003)
[Crossref]

Y. Fujimoto and M. Nakatsuka, “Infrared luminescence from bismuth-doped silica glass,” Jpn. J. App. Phys. 40, L279–L281 (2001)
[Crossref]

Fujiwara, S.

Hirao, K.

Jiang, X.

Kanbara, H.

Lauer, R. B.

R. B. Lauer, “Photoluminescence in Bi12SiO20 and Bi12GeO20,” Appl. Phys. Lett. 17, 178–179 (1970)
[Crossref]

Meng, X.

M. Peng, J. Qiu, D. Chen, X. Meng, L. Yang, X. Jiang, and C. Zhu, “Bismuth- and aluminum co-doped germanium oxide glasses for super-broadband optical amplification,” Opt. Lett. 29, 1998–2000 (2004)
[Crossref] [PubMed]

X. Meng, Photon Craft Project, Shanghai Institute of Optics and Fine Mechanics, Graduate School of Chinese Academy of Sciences and Japan Science and Technology Agency, Shanghai 201800, China, and M. Peng, J. Qiu, D. Chen, X. Jiang and C. Zhu are preparing a manuscript to be called “Infrared broadband emission of bismuth-doped barium-aluminum-borate glasses.”

Monchamp, R. R.

M. J. Weber and R. R. Monchamp, “Luminescence of Bi4Ge3O12 : spectral and decay properties,” J. Appl. Phys. 44, 5495–5499 (1973)
[Crossref]

Mori, A.

A. Mori, Y. Ohishi, and S. Sudo, “Erbium-doped tellurite glass fibre laser and amplifier,” Electron. Lett. 33, 863–864 (1997)
[Crossref]

Nakatsuka, M.

Y. Fujimoto and M. Nakatsuka, “Optical amplification in bismuth-doped silica glass,” App. Phys. Lett. 82, 3325–3326 (2003)
[Crossref]

Y. Fujimoto and M. Nakatsuka, “Infrared luminescence from bismuth-doped silica glass,” Jpn. J. App. Phys. 40, L279–L281 (2001)
[Crossref]

Naumov, S.

Ohishi, Y.

T. Sazuki and Y. Ohishi, “Broadband 1400nm emission from Ni2+ in zink-alumino-silicate glass,” Appl. Phys. Lett. 84, 3804–3806 (2004)
[Crossref]

A. Mori, Y. Ohishi, and S. Sudo, “Erbium-doped tellurite glass fibre laser and amplifier,” Electron. Lett. 33, 863–864 (1997)
[Crossref]

Peng, M.

Qiu, J.

Sazuki, T.

T. Sazuki and Y. Ohishi, “Broadband 1400nm emission from Ni2+ in zink-alumino-silicate glass,” Appl. Phys. Lett. 84, 3804–3806 (2004)
[Crossref]

Shestakov, A. V.

Sorokin, E.

Sorokina, I. T.

Strivastava, A. M.

A. M. Strivastava, “Luminescence of divalent bismuth in M2+BPO5 (M2+=Ba2+, Sr2+ and Ca2+),” J. Lumin. 78, 239–243 (1998)
[Crossref]

Sudo, S.

A. Mori, Y. Ohishi, and S. Sudo, “Erbium-doped tellurite glass fibre laser and amplifier,” Electron. Lett. 33, 863–864 (1997)
[Crossref]

Sugimoto, N.

Tanaka, K.

Volf, M. B.

M. B. Volf, Chemical approach to glass, Vol. 7 of Glass Science and Technology Series (Elsevier, New York, 1984) 406–410, 465–469

Weber, M. J.

M. J. Weber and R. R. Monchamp, “Luminescence of Bi4Ge3O12 : spectral and decay properties,” J. Appl. Phys. 44, 5495–5499 (1973)
[Crossref]

Wintner, E.

Yang, L.

Zhu, C.

App. Phys. Lett. (1)

Y. Fujimoto and M. Nakatsuka, “Optical amplification in bismuth-doped silica glass,” App. Phys. Lett. 82, 3325–3326 (2003)
[Crossref]

Appl. Phys. Lett. (2)

T. Sazuki and Y. Ohishi, “Broadband 1400nm emission from Ni2+ in zink-alumino-silicate glass,” Appl. Phys. Lett. 84, 3804–3806 (2004)
[Crossref]

R. B. Lauer, “Photoluminescence in Bi12SiO20 and Bi12GeO20,” Appl. Phys. Lett. 17, 178–179 (1970)
[Crossref]

Electron. Lett. (1)

A. Mori, Y. Ohishi, and S. Sudo, “Erbium-doped tellurite glass fibre laser and amplifier,” Electron. Lett. 33, 863–864 (1997)
[Crossref]

J. Appl. Phys. (1)

M. J. Weber and R. R. Monchamp, “Luminescence of Bi4Ge3O12 : spectral and decay properties,” J. Appl. Phys. 44, 5495–5499 (1973)
[Crossref]

J. Chem. Phys. (1)

G. Blasse and A. Bril, “Investigations on Bi3+-activated phosphors,” J. Chem. Phys. 48, 217–222 (1968)
[Crossref]

J. Lumin. (1)

A. M. Strivastava, “Luminescence of divalent bismuth in M2+BPO5 (M2+=Ba2+, Sr2+ and Ca2+),” J. Lumin. 78, 239–243 (1998)
[Crossref]

J. Non-Cryst. Solids (1)

J. A. Duffy, “Redox equilibria of glass,” J. Non-Cryst. Solids 196, 45–50 (1996)
[Crossref]

J. Phys. Chem. Solids (1)

G. Blasse, “Unusual bismuth luminescence in strontium tetraborate (SrB4O7: Bi),” J. Phys. Chem. Solids 55, 171–174 (1994)
[Crossref]

Jpn. J. App. Phys. (1)

Y. Fujimoto and M. Nakatsuka, “Infrared luminescence from bismuth-doped silica glass,” Jpn. J. App. Phys. 40, L279–L281 (2001)
[Crossref]

Opt. Lett. (3)

Other (3)

M. B. Volf, Chemical approach to glass, Vol. 7 of Glass Science and Technology Series (Elsevier, New York, 1984) 406–410, 465–469

X. Meng, Photon Craft Project, Shanghai Institute of Optics and Fine Mechanics, Graduate School of Chinese Academy of Sciences and Japan Science and Technology Agency, Shanghai 201800, China, and M. Peng, J. Qiu, D. Chen, X. Jiang and C. Zhu are preparing a manuscript to be called “Infrared broadband emission of bismuth-doped barium-aluminum-borate glasses.”

G. P. Agrawal, Nonlinear Fiber Optics, 2nd edition (Academic, San Diego, 1995)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Transmission spectra of PAB and GAB glasses

Fig. 2.
Fig. 2.

Normalized emission spectra of PAB, when excited by 405nm LD, 514nm Ar+ laser, 808nm LD and 980nm LD, respectively.

Fig. 3.
Fig. 3.

Emission spectra of PAB and GAB glasses, when excited by 808nm LD.

Fig.4. .
Fig.4. .

nergy level diagram for Bi+, which is proposed based on energy matching conditions (NIR: near infrared emission).

Fig. 5.
Fig. 5.

Log-log plots of infrared emission intensity as a function of pump power at 808nm and 980nm

Fig.6. .
Fig.6. .

he emission decay curve of PAB, the monitoring wavelength is 1300nm under 808nm LD excitation.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

σ ( λ ) = λ 2 g ( λ ) 8 π n 2 τ
σ = λ 0 2 4 π n 2 τ 21 Δ ν ( l n 2 π ) 1 2

Metrics