Abstract

Near infrared broadband emission characteristics of bismuth-doped aluminophosphate glass have been investigated. Broad infrared emissions peaking at 1210nm, 1173nm and 1300nm were observed when the glass was pumped by 405nm laser diode (LD), 514nm Ar+ laser and 808nm LD, respectively. The full widths at half maximum (FWHMs) are 235nm, 207nm and 300nm for the emissions at 1210nm, 1173nm and 1300nm, respectively. Based on the energy matching conditions, it is suggested that the infrared emission may be ascribed to 3P13P0 transition of Bi+. The broadband infrared luminescent characteristics of the glasses indicate that they are promising for broadband optical fiber amplifiers and tunable lasers.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. A. Mori, Y. Ohishi and S. Sudo, �??Erbium-doped tellurite glass fibre laser and amplifier,�?? Electron. Lett. 33, 863-864 (1997)
    [CrossRef]
  2. G. P. Agrawal, Nonlinear Fiber Optics, 2nd edition (Academic, San Diego, 1995)
  3. Y. Fujimoto and M. Nakatsuka, �??Infrared luminescence from bismuth-doped silica glass,�?? Jpn. J. App. Phys. 40, L279-L281 (2001)
    [CrossRef]
  4. Y. Fujimoto and M. Nakatsuka, �??Optical amplification in bismuth-doped silica glass,�?? App. Phys. Lett. 82, 3325-3326 (2003)
    [CrossRef]
  5. M. Peng, J. Qiu, D. Chen, X. Meng, L. Yang, X. Jiang and C. Zhu, �??Bismuth- and aluminum co-doped germanium oxide glasses for super-broadband optical amplification,�?? Opt. Lett. 29, 1998-2000 (2004)
    [CrossRef] [PubMed]
  6. T. Sazuki and Y. Ohishi, �??Broadband 1400nm emission from Ni2+ in zink-alumino-silicate glass,�?? Appl. Phys. Lett. 84, 3804-3806 (2004)
    [CrossRef]
  7. I. T. Sorokina, S. Naumov, E. Sorokin, E. Wintner and A. V. Shestakov, �??Directly diode-pumped tunable continuous-wave room-temperature Cr4+: YAG laser,�?? Opt. Lett. 24, 1578-1580 (1999)
    [CrossRef]
  8. N. Sugimoto, H. Kanbara, S. Fujiwara, K. Tanaka and K. Hirao, �??Ultrafast response of third-order optical nonlinearity in glasses containing Bi2O3,�?? Opt. Lett. 21, 1637-1639 (1996)
    [CrossRef] [PubMed]
  9. G. Blasse and A. Bril, �??Investigations on Bi3+-activated phosphors,�?? J. Chem. Phys. 48, 217-222 (1968)
    [CrossRef]
  10. M. J. Weber and R. R. Monchamp, �??Luminescence of Bi4Ge3O12 : spectral and decay properties,�?? J. Appl. Phys. 44, 5495-5499 (1973)
    [CrossRef]
  11. R. B. Lauer, �??Photoluminescence in Bi12SiO20 and Bi12GeO20,�?? Appl. Phys. Lett. 17, 178-179 (1970)
    [CrossRef]
  12. G. Blasse, �??Unusual bismuth luminescence in strontium tetraborate (SrB4O7: Bi),�?? J. Phys. Chem. Solids 55, 171-174 (1994)
    [CrossRef]
  13. A. M. Strivastava, �??Luminescence of divalent bismuth in M2+BPO5 (M2+=Ba2+, Sr2+ and Ca2+),�?? J. Lumin. 78, 239-243 (1998)
    [CrossRef]
  14. M. B. Volf, Chemical approach to glass, Vol. 7 of Glass Science and Technology Series (Elsevier, New York, 1984) 406-410, 465�?? 469
  15. X. Meng, Photon Craft Project, Shanghai Institute of Optics and Fine Mechanics, Graduate School of Chinese Academy of Sciences and Japan Science and Technology Agency, Shanghai 201800, China, and M. Peng, J. Qiu, D. Chen, X. Jiang and C. Zhu are preparing a manuscript to be called �??Infrared broadband emission of bismuth-doped barium-aluminum-borate glasses.�??
  16. J. A. Duffy, �??Redox equilibria of glass,�?? J. Non-Cryst. Solids 196, 45-50 (1996)
    [CrossRef]

App. Phys. Lett. (1)

Y. Fujimoto and M. Nakatsuka, �??Optical amplification in bismuth-doped silica glass,�?? App. Phys. Lett. 82, 3325-3326 (2003)
[CrossRef]

Appl. Phys. Lett. (2)

T. Sazuki and Y. Ohishi, �??Broadband 1400nm emission from Ni2+ in zink-alumino-silicate glass,�?? Appl. Phys. Lett. 84, 3804-3806 (2004)
[CrossRef]

R. B. Lauer, �??Photoluminescence in Bi12SiO20 and Bi12GeO20,�?? Appl. Phys. Lett. 17, 178-179 (1970)
[CrossRef]

Electron. Lett. (1)

A. Mori, Y. Ohishi and S. Sudo, �??Erbium-doped tellurite glass fibre laser and amplifier,�?? Electron. Lett. 33, 863-864 (1997)
[CrossRef]

Glass Science and Technology Series (1)

M. B. Volf, Chemical approach to glass, Vol. 7 of Glass Science and Technology Series (Elsevier, New York, 1984) 406-410, 465�?? 469

J. Appl. Phys. (1)

M. J. Weber and R. R. Monchamp, �??Luminescence of Bi4Ge3O12 : spectral and decay properties,�?? J. Appl. Phys. 44, 5495-5499 (1973)
[CrossRef]

J. Chem. Phys. (1)

G. Blasse and A. Bril, �??Investigations on Bi3+-activated phosphors,�?? J. Chem. Phys. 48, 217-222 (1968)
[CrossRef]

J. Lumin. (1)

A. M. Strivastava, �??Luminescence of divalent bismuth in M2+BPO5 (M2+=Ba2+, Sr2+ and Ca2+),�?? J. Lumin. 78, 239-243 (1998)
[CrossRef]

J. Non-Cryst. Solids (1)

J. A. Duffy, �??Redox equilibria of glass,�?? J. Non-Cryst. Solids 196, 45-50 (1996)
[CrossRef]

J. Phys. Chem. Solids (1)

G. Blasse, �??Unusual bismuth luminescence in strontium tetraborate (SrB4O7: Bi),�?? J. Phys. Chem. Solids 55, 171-174 (1994)
[CrossRef]

Jpn. J. App. Phys. (1)

Y. Fujimoto and M. Nakatsuka, �??Infrared luminescence from bismuth-doped silica glass,�?? Jpn. J. App. Phys. 40, L279-L281 (2001)
[CrossRef]

Opt. Lett. (3)

Other (2)

G. P. Agrawal, Nonlinear Fiber Optics, 2nd edition (Academic, San Diego, 1995)

X. Meng, Photon Craft Project, Shanghai Institute of Optics and Fine Mechanics, Graduate School of Chinese Academy of Sciences and Japan Science and Technology Agency, Shanghai 201800, China, and M. Peng, J. Qiu, D. Chen, X. Jiang and C. Zhu are preparing a manuscript to be called �??Infrared broadband emission of bismuth-doped barium-aluminum-borate glasses.�??

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Transmission spectra of PAB and GAB glasses

Fig. 2.
Fig. 2.

Normalized emission spectra of PAB, when excited by 405nm LD, 514nm Ar+ laser, 808nm LD and 980nm LD, respectively.

Fig. 3.
Fig. 3.

Emission spectra of PAB and GAB glasses, when excited by 808nm LD.

Fig.4. .
Fig.4. .

nergy level diagram for Bi+, which is proposed based on energy matching conditions (NIR: near infrared emission).

Fig. 5.
Fig. 5.

Log-log plots of infrared emission intensity as a function of pump power at 808nm and 980nm

Fig.6. .
Fig.6. .

he emission decay curve of PAB, the monitoring wavelength is 1300nm under 808nm LD excitation.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

σ ( λ ) = λ 2 g ( λ ) 8 π n 2 τ
σ = λ 0 2 4 π n 2 τ 21 Δ ν ( l n 2 π ) 1 2

Metrics