B. Kanmani and R. M. Vasu, “Diffuse optical tomography using intensity measurements and the a priori acquired regions of interest: theory and simulations,” Phy. Med. Biol. 50, 247–264 (2005).

[Crossref]

Y. Phaneendra Kumar and R. M. Vasu, “Reconstruction of optical properties of low-scattering tissue using derivative estimated through perturbation Monte-Carlo method,” J. Biomed. Opt. 9, 1002–1012 (2004).

[Crossref]
[PubMed]

Y. Xu, Q. Zhang, and H. Jiang, “Optical image reconstruction of non-scattering and low scattering heterogeneities in turbid media based on the diffusion approximation model,” J. Opt. A: Pure Appl. Opt. 6, 29–35 (2004).

[Crossref]

A. D. Klose and A. H. Hielscher, “Quasi-Newton methods in optical tomographic image reconstruction,” Inverse Problems 14, 387–403 (2003).

[Crossref]

J. C. Hebden, D. A. Boas, J. S. George, and Anthony J. Durkin, “Topics in Biomedical Optics: Introduction,” Appl. Opt. 42, 2869–2870 (2003).

[Crossref]

E. Okada and D. T. Delpy, “Near-infrared light propagation in an adult head model. I. Modeling of low-level scattering in the cerebrospinal fluid layer,” Appl. Opt. 42, 2906–2914 (2003).

[Crossref]
[PubMed]

E. Okada and D. T. Delpy, “Near-infrared light propagation in an adult head model. II. Effect of superficial tissue thickness on the sensitivity of the near-infrared spectroscopy signal,” Appl. Opt. 42, 2915–2922 (2003).

[Crossref]
[PubMed]

A. D. Klose, U. Netz, J. Beuthan, and A. H. Hielscher, “Optical tomography using the time-independent equation of radiative transfer - Part 1:forward model,” J. Quant. Spectrosc. Radiat. Transf. 72, 691–713 (2002).

[Crossref]

A. D. Klose and A. H. Hielscher, “Optical tomography using the time-independent equation of radiative transfer - Part 2:inverse model,” J. Quant. Spectrosc. Radiat. Transf. 72, 715–732 (2002).

[Crossref]

D. A. Boas, J. P. Culver, J. J. Stott, and A. K. Dunn, “Three dimensional Monte Carlo code for photon migration through complex heterogeneous media including the adult human head,” Opt. Express 10, 159–170 (2002), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-3-159

[PubMed]

Y. Xu, N. V. Iftimia, H. Jiang, L. L. Key, and M. B. Bolster, “Imaging of in vitro and in vivo bones and joints with continuous-wave diffuse optical tomography,” Opt. Express 8, 447–451 (2001), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-7-447

[Crossref]
[PubMed]

Y. Pei, H. L. Graber, and R. L. Barbour, “Normalized-constraint algorithm for minimizing inter-parameter crosstalk in DC optical tomography,” Opt. Express 9, 97–109 (2001), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-2-97

[Crossref]
[PubMed]

C. K. Hayakawa, J. Spanier, F. Bevilacqua, A. K. Dunn, J. S. You, B. J. Tromberg, and V. Venugopalan, “Perturbation Monte Carlo methods to solve inverse photon migration problems in heterogeneous tissues,” Opt. Lett. 26, 1335–1337 (2001).

[Crossref]

H. Dehghani, S. R. Arridge, M. Schweiger, and D. T. Delpy, “Optical tomography in the presence of void regions,” J. Opt. Soc. Am. A 17, 1659–1670 (2000).

[Crossref]

J. Ripoll, N. Nieto-Vesperinas, S. R. Arridge, and H. Dehghani, “Boundary conditions for light propagation in diffuse media with nonscattering regions,” J. Opt. Soc. Am. A 17, 1671–1681 (2000).

[Crossref]

H. Dehghani and D. T. Delpy, “Near-infrared spectroscopy of the adult head: effect of scattering and absorbing obstructions in the cerebrospinal fluid layer on light distribution in the tissue,” Appl. Opt. 39, 4721–4729 (2000).

[Crossref]

S. R. Arridge, H. Dehghani, M. Schweiger, and E. Okada, “The finite element model for the propagation of light scattering media: a direct method for domain with nonscattering regions,” Med. Phys. 27, 252–264 (2000).

[Crossref]
[PubMed]

M. Wolf, M. Keel, V. Dietz, K. von Siebenthal, H. U. Bucher, and O. Baenziger, “The influence of a clear layer on near-infrared spectrophotometry measurements using a liquid neonatal head phantom,” Phys. Med. Biol. 44, 1743–1753 (1999).

[Crossref]
[PubMed]

A. D. Klose and A. H. Hielscher, “Iterative reconstruction scheme for optical tomography based on the equation of radiative transfer,” Med. Phys. 26, 1698–1707 (1999).

[Crossref]
[PubMed]

S. R. Arridge, “Optical tomography in medical imaging,” Inverse Problems 15, R41–R93 (1999).

[Crossref]

H. Jiang, “Optical image reconstruction based on the third-order diffusion equations,” Opt. Express 4, 241–246 (1999), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-4-8-241

[Crossref]
[PubMed]

A. H. Hielscher, A. D. Klose, and K. M. Hanson, “Gradient-based iterative image reconstruction scheme for time-resolved optical tomography,” IEEE Trans. Med. Imag. 18, 262–271 (1999).

[Crossref]

J. C. Ye, K. J. Webb, R. P. Millane, and T. J. Downar, “Modified distorted Born iterative method with an approximate Frechet derivative for optical diffusion tomography,” J. Opt. Soc. Am. A 16, 1814–1826 (1999).

[Crossref]

S. R. Arridge and W. R. B. Lionheart, “Nonuniqueness in diffusion-based optical tomography,” Opt. Lett. 23, 882–884 (1998).

[Crossref]

A. Sassaroli, C. Blumetti, F. Martelli, L. Alianelli, D. Contini, A. Ismaelli, and G. Zaccanti, “Monte Carlo procedure for investigating light propagation and imaging of highly scattering media,” Appl. Opt. 37, 7392–7400 (1998).

[Crossref]

O. Dorn, “A transport-backtransport method for optical tomography,” Inverse Problems 14, 1107–1130 (1998).

[Crossref]

A. D. Klose, A. H. Hielscher, K. M. Hanson, and J. Beuthan, “Three-dimensional optical tomography of a finger joint model for diagnostic of rheumatoid arthritis,” Proc. SPIE 3566, 151–159(1998).

[Crossref]

M. Firbank, E. Okada, and D. T. Delpy, “A theoretical study of the signal contribution of regions of the adult head to near infrared spectroscopy studies of visual evoked responses,” Neuroimage 8, 69–78 (1998).

[Crossref]
[PubMed]

A. D. Klose, V. Prapavat, O. Minet, J. Beuthan, and G. Muller, “RA diagnostics applying optical tomography in frequency-domain,” Proc. SPIE 3196, 194–204 (1997).

[Crossref]

J. C. Hebden, S. R. Arridge, and D. T. Delpy, “Optical imaging in medicine. I. Experimental techniques,” Phys. Med. Biol. 42, 825–840 (1997).

[Crossref]
[PubMed]

S. R. Arridge and J. C. Hebden, “Optical imaging in medicine. II. Modelling and reconstruction,” Phys. Med. Biol. 42, 841–853 (1997).

[Crossref]
[PubMed]

E. Okada, M. Firbank, M. Schweiger, S. R. Arridge, M. Cope, and D. T. Delpy, “Theoretical and experimental investigation of near-infrared light propagation in a model of the adult head,” Appl. Opt. 36, 21–31 (1997).

[Crossref]
[PubMed]

M. Firbank, S. R. Arridge, M. Schweiger, and D. T. Delpy, “An investigation of light transport through scattering bodies with nonscattering regions,” Phys. Med. Biol. 41, 767–783 (1996).

[Crossref]
[PubMed]

A. Yodh and B. Chance, “Spectroscopy and Imaging with diffusing light,” Phy. Today 48, 34–40 (1995).

[Crossref]

F. Natterer and F. Wübbeling, “A propagation-backpropagation method for ultrasound tomography,” Inverse Problems 11, 1225–1232 (1995).

[Crossref]

S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20, 299–309 (1993).

[Crossref]
[PubMed]

N. Herschkowitz, “Brain development in the fetus, neonate and infant, Biol. Neonate 54, 1–19 (1988)

[Crossref]
[PubMed]

H. Dehghani, S. R. Arridge, M. Schweiger, and D. T. Delpy, “Optical tomography in the presence of void regions,” J. Opt. Soc. Am. A 17, 1659–1670 (2000).

[Crossref]

J. Ripoll, N. Nieto-Vesperinas, S. R. Arridge, and H. Dehghani, “Boundary conditions for light propagation in diffuse media with nonscattering regions,” J. Opt. Soc. Am. A 17, 1671–1681 (2000).

[Crossref]

S. R. Arridge, H. Dehghani, M. Schweiger, and E. Okada, “The finite element model for the propagation of light scattering media: a direct method for domain with nonscattering regions,” Med. Phys. 27, 252–264 (2000).

[Crossref]
[PubMed]

S. R. Arridge, “Optical tomography in medical imaging,” Inverse Problems 15, R41–R93 (1999).

[Crossref]

S. R. Arridge and W. R. B. Lionheart, “Nonuniqueness in diffusion-based optical tomography,” Opt. Lett. 23, 882–884 (1998).

[Crossref]

E. Okada, M. Firbank, M. Schweiger, S. R. Arridge, M. Cope, and D. T. Delpy, “Theoretical and experimental investigation of near-infrared light propagation in a model of the adult head,” Appl. Opt. 36, 21–31 (1997).

[Crossref]
[PubMed]

S. R. Arridge and J. C. Hebden, “Optical imaging in medicine. II. Modelling and reconstruction,” Phys. Med. Biol. 42, 841–853 (1997).

[Crossref]
[PubMed]

J. C. Hebden, S. R. Arridge, and D. T. Delpy, “Optical imaging in medicine. I. Experimental techniques,” Phys. Med. Biol. 42, 825–840 (1997).

[Crossref]
[PubMed]

M. Firbank, S. R. Arridge, M. Schweiger, and D. T. Delpy, “An investigation of light transport through scattering bodies with nonscattering regions,” Phys. Med. Biol. 41, 767–783 (1996).

[Crossref]
[PubMed]

S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20, 299–309 (1993).

[Crossref]
[PubMed]

M. Wolf, M. Keel, V. Dietz, K. von Siebenthal, H. U. Bucher, and O. Baenziger, “The influence of a clear layer on near-infrared spectrophotometry measurements using a liquid neonatal head phantom,” Phys. Med. Biol. 44, 1743–1753 (1999).

[Crossref]
[PubMed]

A. D. Klose, U. Netz, J. Beuthan, and A. H. Hielscher, “Optical tomography using the time-independent equation of radiative transfer - Part 1:forward model,” J. Quant. Spectrosc. Radiat. Transf. 72, 691–713 (2002).

[Crossref]

A. D. Klose, A. H. Hielscher, K. M. Hanson, and J. Beuthan, “Three-dimensional optical tomography of a finger joint model for diagnostic of rheumatoid arthritis,” Proc. SPIE 3566, 151–159(1998).

[Crossref]

A. D. Klose, V. Prapavat, O. Minet, J. Beuthan, and G. Muller, “RA diagnostics applying optical tomography in frequency-domain,” Proc. SPIE 3196, 194–204 (1997).

[Crossref]

J. C. Hebden, D. A. Boas, J. S. George, and Anthony J. Durkin, “Topics in Biomedical Optics: Introduction,” Appl. Opt. 42, 2869–2870 (2003).

[Crossref]

D. A. Boas, J. P. Culver, J. J. Stott, and A. K. Dunn, “Three dimensional Monte Carlo code for photon migration through complex heterogeneous media including the adult human head,” Opt. Express 10, 159–170 (2002), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-3-159

[PubMed]

M. Wolf, M. Keel, V. Dietz, K. von Siebenthal, H. U. Bucher, and O. Baenziger, “The influence of a clear layer on near-infrared spectrophotometry measurements using a liquid neonatal head phantom,” Phys. Med. Biol. 44, 1743–1753 (1999).

[Crossref]
[PubMed]

A. Yodh and B. Chance, “Spectroscopy and Imaging with diffusing light,” Phy. Today 48, 34–40 (1995).

[Crossref]

R. Chandrasekhar, Radiation Transfer (Oxford, Clarendon, 1950).

B. Jain, P. K. Gupta, V. A. Podzyavnikov, and V. K. Chevokin, “Development and characterization of a UV-visible streak camera and its use for time resolved fluorescence studies on human tissues,” Proc. National Laser Symposium, B.A.R.C., Mumbai, India, January 17–19, 1996, National Laser Program, Department of Atomic Energy, Government of India, C3–C4 (1996).

J. Ripoll, N. Nieto-Vesperinas, S. R. Arridge, and H. Dehghani, “Boundary conditions for light propagation in diffuse media with nonscattering regions,” J. Opt. Soc. Am. A 17, 1671–1681 (2000).

[Crossref]

H. Dehghani and D. T. Delpy, “Near-infrared spectroscopy of the adult head: effect of scattering and absorbing obstructions in the cerebrospinal fluid layer on light distribution in the tissue,” Appl. Opt. 39, 4721–4729 (2000).

[Crossref]

H. Dehghani, S. R. Arridge, M. Schweiger, and D. T. Delpy, “Optical tomography in the presence of void regions,” J. Opt. Soc. Am. A 17, 1659–1670 (2000).

[Crossref]

S. R. Arridge, H. Dehghani, M. Schweiger, and E. Okada, “The finite element model for the propagation of light scattering media: a direct method for domain with nonscattering regions,” Med. Phys. 27, 252–264 (2000).

[Crossref]
[PubMed]

E. Okada and D. T. Delpy, “Near-infrared light propagation in an adult head model. I. Modeling of low-level scattering in the cerebrospinal fluid layer,” Appl. Opt. 42, 2906–2914 (2003).

[Crossref]
[PubMed]

E. Okada and D. T. Delpy, “Near-infrared light propagation in an adult head model. II. Effect of superficial tissue thickness on the sensitivity of the near-infrared spectroscopy signal,” Appl. Opt. 42, 2915–2922 (2003).

[Crossref]
[PubMed]

H. Dehghani, S. R. Arridge, M. Schweiger, and D. T. Delpy, “Optical tomography in the presence of void regions,” J. Opt. Soc. Am. A 17, 1659–1670 (2000).

[Crossref]

H. Dehghani and D. T. Delpy, “Near-infrared spectroscopy of the adult head: effect of scattering and absorbing obstructions in the cerebrospinal fluid layer on light distribution in the tissue,” Appl. Opt. 39, 4721–4729 (2000).

[Crossref]

M. Firbank, E. Okada, and D. T. Delpy, “A theoretical study of the signal contribution of regions of the adult head to near infrared spectroscopy studies of visual evoked responses,” Neuroimage 8, 69–78 (1998).

[Crossref]
[PubMed]

J. C. Hebden, S. R. Arridge, and D. T. Delpy, “Optical imaging in medicine. I. Experimental techniques,” Phys. Med. Biol. 42, 825–840 (1997).

[Crossref]
[PubMed]

E. Okada, M. Firbank, M. Schweiger, S. R. Arridge, M. Cope, and D. T. Delpy, “Theoretical and experimental investigation of near-infrared light propagation in a model of the adult head,” Appl. Opt. 36, 21–31 (1997).

[Crossref]
[PubMed]

M. Firbank, S. R. Arridge, M. Schweiger, and D. T. Delpy, “An investigation of light transport through scattering bodies with nonscattering regions,” Phys. Med. Biol. 41, 767–783 (1996).

[Crossref]
[PubMed]

S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20, 299–309 (1993).

[Crossref]
[PubMed]

M. Wolf, M. Keel, V. Dietz, K. von Siebenthal, H. U. Bucher, and O. Baenziger, “The influence of a clear layer on near-infrared spectrophotometry measurements using a liquid neonatal head phantom,” Phys. Med. Biol. 44, 1743–1753 (1999).

[Crossref]
[PubMed]

O. Dorn, “A transport-backtransport method for optical tomography,” Inverse Problems 14, 1107–1130 (1998).

[Crossref]

D. A. Boas, J. P. Culver, J. J. Stott, and A. K. Dunn, “Three dimensional Monte Carlo code for photon migration through complex heterogeneous media including the adult human head,” Opt. Express 10, 159–170 (2002), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-3-159

[PubMed]

C. K. Hayakawa, J. Spanier, F. Bevilacqua, A. K. Dunn, J. S. You, B. J. Tromberg, and V. Venugopalan, “Perturbation Monte Carlo methods to solve inverse photon migration problems in heterogeneous tissues,” Opt. Lett. 26, 1335–1337 (2001).

[Crossref]

M. Firbank, E. Okada, and D. T. Delpy, “A theoretical study of the signal contribution of regions of the adult head to near infrared spectroscopy studies of visual evoked responses,” Neuroimage 8, 69–78 (1998).

[Crossref]
[PubMed]

E. Okada, M. Firbank, M. Schweiger, S. R. Arridge, M. Cope, and D. T. Delpy, “Theoretical and experimental investigation of near-infrared light propagation in a model of the adult head,” Appl. Opt. 36, 21–31 (1997).

[Crossref]
[PubMed]

M. Firbank, S. R. Arridge, M. Schweiger, and D. T. Delpy, “An investigation of light transport through scattering bodies with nonscattering regions,” Phys. Med. Biol. 41, 767–783 (1996).

[Crossref]
[PubMed]

J. Spanier and E. M. Gelbard, Monte Carlo Principles and Neutron Transport Problems (Addison-Wesley, Reading, Mass., 1969).

B. Jain, P. K. Gupta, V. A. Podzyavnikov, and V. K. Chevokin, “Development and characterization of a UV-visible streak camera and its use for time resolved fluorescence studies on human tissues,” Proc. National Laser Symposium, B.A.R.C., Mumbai, India, January 17–19, 1996, National Laser Program, Department of Atomic Energy, Government of India, C3–C4 (1996).

A. H. Hielscher, A. D. Klose, and K. M. Hanson, “Gradient-based iterative image reconstruction scheme for time-resolved optical tomography,” IEEE Trans. Med. Imag. 18, 262–271 (1999).

[Crossref]

A. D. Klose, A. H. Hielscher, K. M. Hanson, and J. Beuthan, “Three-dimensional optical tomography of a finger joint model for diagnostic of rheumatoid arthritis,” Proc. SPIE 3566, 151–159(1998).

[Crossref]

J. C. Hebden, D. A. Boas, J. S. George, and Anthony J. Durkin, “Topics in Biomedical Optics: Introduction,” Appl. Opt. 42, 2869–2870 (2003).

[Crossref]

J. C. Hebden, S. R. Arridge, and D. T. Delpy, “Optical imaging in medicine. I. Experimental techniques,” Phys. Med. Biol. 42, 825–840 (1997).

[Crossref]
[PubMed]

S. R. Arridge and J. C. Hebden, “Optical imaging in medicine. II. Modelling and reconstruction,” Phys. Med. Biol. 42, 841–853 (1997).

[Crossref]
[PubMed]

N. Herschkowitz, “Brain development in the fetus, neonate and infant, Biol. Neonate 54, 1–19 (1988)

[Crossref]
[PubMed]

A. D. Klose and A. H. Hielscher, “Quasi-Newton methods in optical tomographic image reconstruction,” Inverse Problems 14, 387–403 (2003).

[Crossref]

A. D. Klose, U. Netz, J. Beuthan, and A. H. Hielscher, “Optical tomography using the time-independent equation of radiative transfer - Part 1:forward model,” J. Quant. Spectrosc. Radiat. Transf. 72, 691–713 (2002).

[Crossref]

A. D. Klose and A. H. Hielscher, “Optical tomography using the time-independent equation of radiative transfer - Part 2:inverse model,” J. Quant. Spectrosc. Radiat. Transf. 72, 715–732 (2002).

[Crossref]

A. H. Hielscher, A. D. Klose, and K. M. Hanson, “Gradient-based iterative image reconstruction scheme for time-resolved optical tomography,” IEEE Trans. Med. Imag. 18, 262–271 (1999).

[Crossref]

A. D. Klose and A. H. Hielscher, “Iterative reconstruction scheme for optical tomography based on the equation of radiative transfer,” Med. Phys. 26, 1698–1707 (1999).

[Crossref]
[PubMed]

A. D. Klose, A. H. Hielscher, K. M. Hanson, and J. Beuthan, “Three-dimensional optical tomography of a finger joint model for diagnostic of rheumatoid arthritis,” Proc. SPIE 3566, 151–159(1998).

[Crossref]

S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20, 299–309 (1993).

[Crossref]
[PubMed]

A. Ishimaru, Wave Propagation and Scattering in Random Media (IEEE Press, New York, 1997).

B. Jain, P. K. Gupta, V. A. Podzyavnikov, and V. K. Chevokin, “Development and characterization of a UV-visible streak camera and its use for time resolved fluorescence studies on human tissues,” Proc. National Laser Symposium, B.A.R.C., Mumbai, India, January 17–19, 1996, National Laser Program, Department of Atomic Energy, Government of India, C3–C4 (1996).

Y. Xu, Q. Zhang, and H. Jiang, “Optical image reconstruction of non-scattering and low scattering heterogeneities in turbid media based on the diffusion approximation model,” J. Opt. A: Pure Appl. Opt. 6, 29–35 (2004).

[Crossref]

Y. Xu, N. V. Iftimia, H. Jiang, L. L. Key, and M. B. Bolster, “Imaging of in vitro and in vivo bones and joints with continuous-wave diffuse optical tomography,” Opt. Express 8, 447–451 (2001), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-7-447

[Crossref]
[PubMed]

H. Jiang, “Optical image reconstruction based on the third-order diffusion equations,” Opt. Express 4, 241–246 (1999), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-4-8-241

[Crossref]
[PubMed]

B. Kanmani and R. M. Vasu, “Diffuse optical tomography using intensity measurements and the a priori acquired regions of interest: theory and simulations,” Phy. Med. Biol. 50, 247–264 (2005).

[Crossref]

M. Wolf, M. Keel, V. Dietz, K. von Siebenthal, H. U. Bucher, and O. Baenziger, “The influence of a clear layer on near-infrared spectrophotometry measurements using a liquid neonatal head phantom,” Phys. Med. Biol. 44, 1743–1753 (1999).

[Crossref]
[PubMed]

A. D. Klose and A. H. Hielscher, “Quasi-Newton methods in optical tomographic image reconstruction,” Inverse Problems 14, 387–403 (2003).

[Crossref]

A. D. Klose and A. H. Hielscher, “Optical tomography using the time-independent equation of radiative transfer - Part 2:inverse model,” J. Quant. Spectrosc. Radiat. Transf. 72, 715–732 (2002).

[Crossref]

A. D. Klose, U. Netz, J. Beuthan, and A. H. Hielscher, “Optical tomography using the time-independent equation of radiative transfer - Part 1:forward model,” J. Quant. Spectrosc. Radiat. Transf. 72, 691–713 (2002).

[Crossref]

A. D. Klose and A. H. Hielscher, “Iterative reconstruction scheme for optical tomography based on the equation of radiative transfer,” Med. Phys. 26, 1698–1707 (1999).

[Crossref]
[PubMed]

A. H. Hielscher, A. D. Klose, and K. M. Hanson, “Gradient-based iterative image reconstruction scheme for time-resolved optical tomography,” IEEE Trans. Med. Imag. 18, 262–271 (1999).

[Crossref]

A. D. Klose, A. H. Hielscher, K. M. Hanson, and J. Beuthan, “Three-dimensional optical tomography of a finger joint model for diagnostic of rheumatoid arthritis,” Proc. SPIE 3566, 151–159(1998).

[Crossref]

A. D. Klose, V. Prapavat, O. Minet, J. Beuthan, and G. Muller, “RA diagnostics applying optical tomography in frequency-domain,” Proc. SPIE 3196, 194–204 (1997).

[Crossref]

A. D. Klose, V. Prapavat, O. Minet, J. Beuthan, and G. Muller, “RA diagnostics applying optical tomography in frequency-domain,” Proc. SPIE 3196, 194–204 (1997).

[Crossref]

A. D. Klose, V. Prapavat, O. Minet, J. Beuthan, and G. Muller, “RA diagnostics applying optical tomography in frequency-domain,” Proc. SPIE 3196, 194–204 (1997).

[Crossref]

F. Natterer and F. Wübbeling, “A propagation-backpropagation method for ultrasound tomography,” Inverse Problems 11, 1225–1232 (1995).

[Crossref]

A. D. Klose, U. Netz, J. Beuthan, and A. H. Hielscher, “Optical tomography using the time-independent equation of radiative transfer - Part 1:forward model,” J. Quant. Spectrosc. Radiat. Transf. 72, 691–713 (2002).

[Crossref]

E. Okada and D. T. Delpy, “Near-infrared light propagation in an adult head model. I. Modeling of low-level scattering in the cerebrospinal fluid layer,” Appl. Opt. 42, 2906–2914 (2003).

[Crossref]
[PubMed]

E. Okada and D. T. Delpy, “Near-infrared light propagation in an adult head model. II. Effect of superficial tissue thickness on the sensitivity of the near-infrared spectroscopy signal,” Appl. Opt. 42, 2915–2922 (2003).

[Crossref]
[PubMed]

S. R. Arridge, H. Dehghani, M. Schweiger, and E. Okada, “The finite element model for the propagation of light scattering media: a direct method for domain with nonscattering regions,” Med. Phys. 27, 252–264 (2000).

[Crossref]
[PubMed]

M. Firbank, E. Okada, and D. T. Delpy, “A theoretical study of the signal contribution of regions of the adult head to near infrared spectroscopy studies of visual evoked responses,” Neuroimage 8, 69–78 (1998).

[Crossref]
[PubMed]

E. Okada, M. Firbank, M. Schweiger, S. R. Arridge, M. Cope, and D. T. Delpy, “Theoretical and experimental investigation of near-infrared light propagation in a model of the adult head,” Appl. Opt. 36, 21–31 (1997).

[Crossref]
[PubMed]

Y. Phaneendra Kumar and R. M. Vasu, “Reconstruction of optical properties of low-scattering tissue using derivative estimated through perturbation Monte-Carlo method,” J. Biomed. Opt. 9, 1002–1012 (2004).

[Crossref]
[PubMed]

B. Jain, P. K. Gupta, V. A. Podzyavnikov, and V. K. Chevokin, “Development and characterization of a UV-visible streak camera and its use for time resolved fluorescence studies on human tissues,” Proc. National Laser Symposium, B.A.R.C., Mumbai, India, January 17–19, 1996, National Laser Program, Department of Atomic Energy, Government of India, C3–C4 (1996).

A. D. Klose, V. Prapavat, O. Minet, J. Beuthan, and G. Muller, “RA diagnostics applying optical tomography in frequency-domain,” Proc. SPIE 3196, 194–204 (1997).

[Crossref]

H. Dehghani, S. R. Arridge, M. Schweiger, and D. T. Delpy, “Optical tomography in the presence of void regions,” J. Opt. Soc. Am. A 17, 1659–1670 (2000).

[Crossref]

S. R. Arridge, H. Dehghani, M. Schweiger, and E. Okada, “The finite element model for the propagation of light scattering media: a direct method for domain with nonscattering regions,” Med. Phys. 27, 252–264 (2000).

[Crossref]
[PubMed]

E. Okada, M. Firbank, M. Schweiger, S. R. Arridge, M. Cope, and D. T. Delpy, “Theoretical and experimental investigation of near-infrared light propagation in a model of the adult head,” Appl. Opt. 36, 21–31 (1997).

[Crossref]
[PubMed]

M. Firbank, S. R. Arridge, M. Schweiger, and D. T. Delpy, “An investigation of light transport through scattering bodies with nonscattering regions,” Phys. Med. Biol. 41, 767–783 (1996).

[Crossref]
[PubMed]

S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20, 299–309 (1993).

[Crossref]
[PubMed]

C. K. Hayakawa, J. Spanier, F. Bevilacqua, A. K. Dunn, J. S. You, B. J. Tromberg, and V. Venugopalan, “Perturbation Monte Carlo methods to solve inverse photon migration problems in heterogeneous tissues,” Opt. Lett. 26, 1335–1337 (2001).

[Crossref]

J. Spanier and E. M. Gelbard, Monte Carlo Principles and Neutron Transport Problems (Addison-Wesley, Reading, Mass., 1969).

B. Kanmani and R. M. Vasu, “Diffuse optical tomography using intensity measurements and the a priori acquired regions of interest: theory and simulations,” Phy. Med. Biol. 50, 247–264 (2005).

[Crossref]

Y. Phaneendra Kumar and R. M. Vasu, “Reconstruction of optical properties of low-scattering tissue using derivative estimated through perturbation Monte-Carlo method,” J. Biomed. Opt. 9, 1002–1012 (2004).

[Crossref]
[PubMed]

M. Wolf, M. Keel, V. Dietz, K. von Siebenthal, H. U. Bucher, and O. Baenziger, “The influence of a clear layer on near-infrared spectrophotometry measurements using a liquid neonatal head phantom,” Phys. Med. Biol. 44, 1743–1753 (1999).

[Crossref]
[PubMed]

M. Wolf, M. Keel, V. Dietz, K. von Siebenthal, H. U. Bucher, and O. Baenziger, “The influence of a clear layer on near-infrared spectrophotometry measurements using a liquid neonatal head phantom,” Phys. Med. Biol. 44, 1743–1753 (1999).

[Crossref]
[PubMed]

F. Natterer and F. Wübbeling, “A propagation-backpropagation method for ultrasound tomography,” Inverse Problems 11, 1225–1232 (1995).

[Crossref]

Y. Xu, Q. Zhang, and H. Jiang, “Optical image reconstruction of non-scattering and low scattering heterogeneities in turbid media based on the diffusion approximation model,” J. Opt. A: Pure Appl. Opt. 6, 29–35 (2004).

[Crossref]

Y. Xu, N. V. Iftimia, H. Jiang, L. L. Key, and M. B. Bolster, “Imaging of in vitro and in vivo bones and joints with continuous-wave diffuse optical tomography,” Opt. Express 8, 447–451 (2001), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-7-447

[Crossref]
[PubMed]

A. Yodh and B. Chance, “Spectroscopy and Imaging with diffusing light,” Phy. Today 48, 34–40 (1995).

[Crossref]

Y. Xu, Q. Zhang, and H. Jiang, “Optical image reconstruction of non-scattering and low scattering heterogeneities in turbid media based on the diffusion approximation model,” J. Opt. A: Pure Appl. Opt. 6, 29–35 (2004).

[Crossref]

J. C. Hebden, D. A. Boas, J. S. George, and Anthony J. Durkin, “Topics in Biomedical Optics: Introduction,” Appl. Opt. 42, 2869–2870 (2003).

[Crossref]

H. Dehghani and D. T. Delpy, “Near-infrared spectroscopy of the adult head: effect of scattering and absorbing obstructions in the cerebrospinal fluid layer on light distribution in the tissue,” Appl. Opt. 39, 4721–4729 (2000).

[Crossref]

E. Okada and D. T. Delpy, “Near-infrared light propagation in an adult head model. I. Modeling of low-level scattering in the cerebrospinal fluid layer,” Appl. Opt. 42, 2906–2914 (2003).

[Crossref]
[PubMed]

E. Okada and D. T. Delpy, “Near-infrared light propagation in an adult head model. II. Effect of superficial tissue thickness on the sensitivity of the near-infrared spectroscopy signal,” Appl. Opt. 42, 2915–2922 (2003).

[Crossref]
[PubMed]

E. Okada, M. Firbank, M. Schweiger, S. R. Arridge, M. Cope, and D. T. Delpy, “Theoretical and experimental investigation of near-infrared light propagation in a model of the adult head,” Appl. Opt. 36, 21–31 (1997).

[Crossref]
[PubMed]

A. Sassaroli, C. Blumetti, F. Martelli, L. Alianelli, D. Contini, A. Ismaelli, and G. Zaccanti, “Monte Carlo procedure for investigating light propagation and imaging of highly scattering media,” Appl. Opt. 37, 7392–7400 (1998).

[Crossref]

N. Herschkowitz, “Brain development in the fetus, neonate and infant, Biol. Neonate 54, 1–19 (1988)

[Crossref]
[PubMed]

A. H. Hielscher, A. D. Klose, and K. M. Hanson, “Gradient-based iterative image reconstruction scheme for time-resolved optical tomography,” IEEE Trans. Med. Imag. 18, 262–271 (1999).

[Crossref]

F. Natterer and F. Wübbeling, “A propagation-backpropagation method for ultrasound tomography,” Inverse Problems 11, 1225–1232 (1995).

[Crossref]

O. Dorn, “A transport-backtransport method for optical tomography,” Inverse Problems 14, 1107–1130 (1998).

[Crossref]

A. D. Klose and A. H. Hielscher, “Quasi-Newton methods in optical tomographic image reconstruction,” Inverse Problems 14, 387–403 (2003).

[Crossref]

S. R. Arridge, “Optical tomography in medical imaging,” Inverse Problems 15, R41–R93 (1999).

[Crossref]

Y. Phaneendra Kumar and R. M. Vasu, “Reconstruction of optical properties of low-scattering tissue using derivative estimated through perturbation Monte-Carlo method,” J. Biomed. Opt. 9, 1002–1012 (2004).

[Crossref]
[PubMed]

Y. Xu, Q. Zhang, and H. Jiang, “Optical image reconstruction of non-scattering and low scattering heterogeneities in turbid media based on the diffusion approximation model,” J. Opt. A: Pure Appl. Opt. 6, 29–35 (2004).

[Crossref]

J. Ripoll, N. Nieto-Vesperinas, S. R. Arridge, and H. Dehghani, “Boundary conditions for light propagation in diffuse media with nonscattering regions,” J. Opt. Soc. Am. A 17, 1671–1681 (2000).

[Crossref]

H. Dehghani, S. R. Arridge, M. Schweiger, and D. T. Delpy, “Optical tomography in the presence of void regions,” J. Opt. Soc. Am. A 17, 1659–1670 (2000).

[Crossref]

J. C. Ye, K. J. Webb, R. P. Millane, and T. J. Downar, “Modified distorted Born iterative method with an approximate Frechet derivative for optical diffusion tomography,” J. Opt. Soc. Am. A 16, 1814–1826 (1999).

[Crossref]

A. D. Klose, U. Netz, J. Beuthan, and A. H. Hielscher, “Optical tomography using the time-independent equation of radiative transfer - Part 1:forward model,” J. Quant. Spectrosc. Radiat. Transf. 72, 691–713 (2002).

[Crossref]

A. D. Klose and A. H. Hielscher, “Optical tomography using the time-independent equation of radiative transfer - Part 2:inverse model,” J. Quant. Spectrosc. Radiat. Transf. 72, 715–732 (2002).

[Crossref]

A. D. Klose and A. H. Hielscher, “Iterative reconstruction scheme for optical tomography based on the equation of radiative transfer,” Med. Phys. 26, 1698–1707 (1999).

[Crossref]
[PubMed]

S. R. Arridge, H. Dehghani, M. Schweiger, and E. Okada, “The finite element model for the propagation of light scattering media: a direct method for domain with nonscattering regions,” Med. Phys. 27, 252–264 (2000).

[Crossref]
[PubMed]

S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20, 299–309 (1993).

[Crossref]
[PubMed]

M. Firbank, E. Okada, and D. T. Delpy, “A theoretical study of the signal contribution of regions of the adult head to near infrared spectroscopy studies of visual evoked responses,” Neuroimage 8, 69–78 (1998).

[Crossref]
[PubMed]

H. Jiang, “Optical image reconstruction based on the third-order diffusion equations,” Opt. Express 4, 241–246 (1999), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-4-8-241

[Crossref]
[PubMed]

Y. Xu, N. V. Iftimia, H. Jiang, L. L. Key, and M. B. Bolster, “Imaging of in vitro and in vivo bones and joints with continuous-wave diffuse optical tomography,” Opt. Express 8, 447–451 (2001), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-7-447

[Crossref]
[PubMed]

Y. Pei, H. L. Graber, and R. L. Barbour, “Normalized-constraint algorithm for minimizing inter-parameter crosstalk in DC optical tomography,” Opt. Express 9, 97–109 (2001), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-2-97

[Crossref]
[PubMed]

D. A. Boas, J. P. Culver, J. J. Stott, and A. K. Dunn, “Three dimensional Monte Carlo code for photon migration through complex heterogeneous media including the adult human head,” Opt. Express 10, 159–170 (2002), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-3-159

[PubMed]

C. K. Hayakawa, J. Spanier, F. Bevilacqua, A. K. Dunn, J. S. You, B. J. Tromberg, and V. Venugopalan, “Perturbation Monte Carlo methods to solve inverse photon migration problems in heterogeneous tissues,” Opt. Lett. 26, 1335–1337 (2001).

[Crossref]

S. R. Arridge and W. R. B. Lionheart, “Nonuniqueness in diffusion-based optical tomography,” Opt. Lett. 23, 882–884 (1998).

[Crossref]

B. Kanmani and R. M. Vasu, “Diffuse optical tomography using intensity measurements and the a priori acquired regions of interest: theory and simulations,” Phy. Med. Biol. 50, 247–264 (2005).

[Crossref]

A. Yodh and B. Chance, “Spectroscopy and Imaging with diffusing light,” Phy. Today 48, 34–40 (1995).

[Crossref]

J. C. Hebden, S. R. Arridge, and D. T. Delpy, “Optical imaging in medicine. I. Experimental techniques,” Phys. Med. Biol. 42, 825–840 (1997).

[Crossref]
[PubMed]

S. R. Arridge and J. C. Hebden, “Optical imaging in medicine. II. Modelling and reconstruction,” Phys. Med. Biol. 42, 841–853 (1997).

[Crossref]
[PubMed]

M. Firbank, S. R. Arridge, M. Schweiger, and D. T. Delpy, “An investigation of light transport through scattering bodies with nonscattering regions,” Phys. Med. Biol. 41, 767–783 (1996).

[Crossref]
[PubMed]

M. Wolf, M. Keel, V. Dietz, K. von Siebenthal, H. U. Bucher, and O. Baenziger, “The influence of a clear layer on near-infrared spectrophotometry measurements using a liquid neonatal head phantom,” Phys. Med. Biol. 44, 1743–1753 (1999).

[Crossref]
[PubMed]

A. D. Klose, V. Prapavat, O. Minet, J. Beuthan, and G. Muller, “RA diagnostics applying optical tomography in frequency-domain,” Proc. SPIE 3196, 194–204 (1997).

[Crossref]

A. D. Klose, A. H. Hielscher, K. M. Hanson, and J. Beuthan, “Three-dimensional optical tomography of a finger joint model for diagnostic of rheumatoid arthritis,” Proc. SPIE 3566, 151–159(1998).

[Crossref]

R. Chandrasekhar, Radiation Transfer (Oxford, Clarendon, 1950).

A. Ishimaru, Wave Propagation and Scattering in Random Media (IEEE Press, New York, 1997).

B. Chance, R. R. Alfano, B. J. Tromberg, M. Tamura, and E. M. Sevick-Muraca, ed., Optical Tomography and Spectroscopy of Tissue IV, Proc. SPIE4250 (2001).

B. Chance and R. R. Alfano, ed., Optical tomography and spectroscopy of tissue: Theory, instrumentation, model, and human studies, Proc. SPIE2979 (1997).

B. Chance and R. R. Alfano, ed., Optical tomography, photon migration and spectroscopy of tissue and model media: theory, human studies, and instrumentation, Proc. SPIE2389 (1995).

J. Spanier and E. M. Gelbard, Monte Carlo Principles and Neutron Transport Problems (Addison-Wesley, Reading, Mass., 1969).

B. Jain, P. K. Gupta, V. A. Podzyavnikov, and V. K. Chevokin, “Development and characterization of a UV-visible streak camera and its use for time resolved fluorescence studies on human tissues,” Proc. National Laser Symposium, B.A.R.C., Mumbai, India, January 17–19, 1996, National Laser Program, Department of Atomic Energy, Government of India, C3–C4 (1996).