Abstract

Experimental results for imaging the low-scattering tissue phantoms based on the derivative estimation through perturbation Monte-Carlo (pMC) method are presented. It is proven that pMC-based methods give superior reconstructions compared to diffusion-based reconstruction methods. An easy way to estimate the Jacobian using analytical expression obtained from perturbation Monte-Carlo method is employed. Simulation studies on the same objects, considered in the experiment, are performed and corresponding results are found to be in reasonable agreement with the experimental studies. It is shown that inter-parameter cross talk in diffusion based methods lead to false results for the low-scattering tissue, where as the pMC-based method gives accurate results.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. C. Hebden, D. A. Boas, J. S. George, and Anthony J. Durkin, “Topics in Biomedical Optics: Introduction,” Appl. Opt. 42, 2869–2870 (2003).
    [CrossRef]
  2. B. Chance, R. R. Alfano, B. J. Tromberg, M. Tamura, and E. M. Sevick-Muraca, ed., Optical Tomography and Spectroscopy of Tissue IV, Proc. SPIE4250 (2001).
  3. B. Chance and R. R. Alfano, ed., Optical tomography and spectroscopy of tissue: Theory, instrumentation, model, and human studies, Proc. SPIE2979 (1997).
  4. B. Chance and R. R. Alfano, ed., Optical tomography, photon migration and spectroscopy of tissue and model media: theory, human studies, and instrumentation, Proc. SPIE2389 (1995).
  5. A. Yodh and B. Chance, “Spectroscopy and Imaging with diffusing light,” Phy. Today 48, 34–40 (1995).
    [CrossRef]
  6. J. C. Hebden, S. R. Arridge, and D. T. Delpy, “Optical imaging in medicine. I. Experimental techniques,” Phys. Med. Biol. 42, 825–840 (1997).
    [CrossRef] [PubMed]
  7. S. R. Arridge and J. C. Hebden, “Optical imaging in medicine. II. Modelling and reconstruction,” Phys. Med. Biol. 42, 841–853 (1997).
    [CrossRef] [PubMed]
  8. S. R. Arridge, “Optical tomography in medical imaging,” Inverse Problems 15, R41–R93 (1999).
    [CrossRef]
  9. R. Chandrasekhar, Radiation Transfer (Oxford, Clarendon, 1950).
  10. A. Ishimaru, Wave Propagation and Scattering in Random Media (IEEE Press, New York, 1997).
  11. M. Firbank, S. R. Arridge, M. Schweiger, and D. T. Delpy, “An investigation of light transport through scattering bodies with nonscattering regions,” Phys. Med. Biol. 41, 767–783 (1996).
    [CrossRef] [PubMed]
  12. J. Ripoll, N. Nieto-Vesperinas, S. R. Arridge, and H. Dehghani, “Boundary conditions for light propagation in diffuse media with nonscattering regions,” J. Opt. Soc. Am. A 17, 1671–1681 (2000).
    [CrossRef]
  13. H. Dehghani, S. R. Arridge, M. Schweiger, and D. T. Delpy, “Optical tomography in the presence of void regions,” J. Opt. Soc. Am. A 17, 1659–1670 (2000).
    [CrossRef]
  14. Y. Xu, Q. Zhang, and H. Jiang, “Optical image reconstruction of non-scattering and low scattering heterogeneities in turbid media based on the diffusion approximation model,” J. Opt. A: Pure Appl. Opt. 6, 29–35 (2004).
    [CrossRef]
  15. E. Okada, M. Firbank, M. Schweiger, S. R. Arridge, M. Cope, and D. T. Delpy, “Theoretical and experimental investigation of near-infrared light propagation in a model of the adult head,” Appl. Opt. 36, 21–31 (1997).
    [CrossRef] [PubMed]
  16. M. Wolf, M. Keel, V. Dietz, K. von Siebenthal, H. U. Bucher, and O. Baenziger, “The influence of a clear layer on near-infrared spectrophotometry measurements using a liquid neonatal head phantom,” Phys. Med. Biol. 44, 1743–1753 (1999).
    [CrossRef] [PubMed]
  17. H. Dehghani and D. T. Delpy, “Near-infrared spectroscopy of the adult head: effect of scattering and absorbing obstructions in the cerebrospinal fluid layer on light distribution in the tissue,” Appl. Opt. 39, 4721–4729 (2000).
    [CrossRef]
  18. E. Okada and D. T. Delpy, “Near-infrared light propagation in an adult head model. I. Modeling of low-level scattering in the cerebrospinal fluid layer,” Appl. Opt. 42, 2906–2914 (2003).
    [CrossRef] [PubMed]
  19. E. Okada and D. T. Delpy, “Near-infrared light propagation in an adult head model. II. Effect of superficial tissue thickness on the sensitivity of the near-infrared spectroscopy signal,” Appl. Opt. 42, 2915–2922 (2003).
    [CrossRef] [PubMed]
  20. A. D. Klose, V. Prapavat, O. Minet, J. Beuthan, and G. Muller, “RA diagnostics applying optical tomography in frequency-domain,” Proc. SPIE 3196, 194–204 (1997).
    [CrossRef]
  21. A. D. Klose, A. H. Hielscher, K. M. Hanson, and J. Beuthan, “Three-dimensional optical tomography of a finger joint model for diagnostic of rheumatoid arthritis,” Proc. SPIE 3566, 151–159(1998).
    [CrossRef]
  22. Y. Xu, N. V. Iftimia, H. Jiang, L. L. Key, and M. B. Bolster, “Imaging of in vitro and in vivo bones and joints with continuous-wave diffuse optical tomography,” Opt. Express 8, 447–451 (2001), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-7-447
    [CrossRef] [PubMed]
  23. O. Dorn, “A transport-backtransport method for optical tomography,” Inverse Problems 14, 1107–1130 (1998).
    [CrossRef]
  24. A. D. Klose and A. H. Hielscher, “Iterative reconstruction scheme for optical tomography based on the equation of radiative transfer,” Med. Phys. 26, 1698–1707 (1999).
    [CrossRef] [PubMed]
  25. A. D. Klose, U. Netz, J. Beuthan, and A. H. Hielscher, “Optical tomography using the time-independent equation of radiative transfer - Part 1:forward model,” J. Quant. Spectrosc. Radiat. Transf. 72, 691–713 (2002).
    [CrossRef]
  26. A. D. Klose and A. H. Hielscher, “Optical tomography using the time-independent equation of radiative transfer - Part 2:inverse model,” J. Quant. Spectrosc. Radiat. Transf. 72, 715–732 (2002).
    [CrossRef]
  27. A. D. Klose and A. H. Hielscher, “Quasi-Newton methods in optical tomographic image reconstruction,” Inverse Problems 14, 387–403 (2003).
    [CrossRef]
  28. M. Firbank, E. Okada, and D. T. Delpy, “A theoretical study of the signal contribution of regions of the adult head to near infrared spectroscopy studies of visual evoked responses,” Neuroimage 8, 69–78 (1998).
    [CrossRef] [PubMed]
  29. S. R. Arridge, H. Dehghani, M. Schweiger, and E. Okada, “The finite element model for the propagation of light scattering media: a direct method for domain with nonscattering regions,” Med. Phys. 27, 252–264 (2000).
    [CrossRef] [PubMed]
  30. H. Jiang, “Optical image reconstruction based on the third-order diffusion equations,” Opt. Express 4, 241–246 (1999), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-4-8-241
    [CrossRef] [PubMed]
  31. N. Herschkowitz, “Brain development in the fetus, neonate and infant, Biol. Neonate 54, 1–19 (1988)
    [CrossRef] [PubMed]
  32. S. R. Arridge and W. R. B. Lionheart, “Nonuniqueness in diffusion-based optical tomography,” Opt. Lett. 23, 882–884 (1998).
    [CrossRef]
  33. Y. Pei, H. L. Graber, and R. L. Barbour, “Normalized-constraint algorithm for minimizing inter-parameter crosstalk in DC optical tomography,” Opt. Express 9, 97–109 (2001), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-2-97
    [CrossRef] [PubMed]
  34. J. C. Ye, K. J. Webb, R. P. Millane, and T. J. Downar, “Modified distorted Born iterative method with an approximate Frechet derivative for optical diffusion tomography,” J. Opt. Soc. Am. A 16, 1814–1826 (1999).
    [CrossRef]
  35. A. Sassaroli, C. Blumetti, F. Martelli, L. Alianelli, D. Contini, A. Ismaelli, and G. Zaccanti, “Monte Carlo procedure for investigating light propagation and imaging of highly scattering media,” Appl. Opt. 37, 7392–7400 (1998).
    [CrossRef]
  36. C. K. Hayakawa, J. Spanier, F. Bevilacqua, A. K. Dunn, J. S. You, B. J. Tromberg, and V. Venugopalan, “Perturbation Monte Carlo methods to solve inverse photon migration problems in heterogeneous tissues,” Opt. Lett. 26, 1335–1337 (2001).
    [CrossRef]
  37. Y. Phaneendra Kumar and R. M. Vasu, “Reconstruction of optical properties of low-scattering tissue using derivative estimated through perturbation Monte-Carlo method,” J. Biomed. Opt. 9, 1002–1012 (2004).
    [CrossRef] [PubMed]
  38. F. Natterer and F. Wübbeling, “A propagation-backpropagation method for ultrasound tomography,” Inverse Problems 11, 1225–1232 (1995).
    [CrossRef]
  39. S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20, 299–309 (1993).
    [CrossRef] [PubMed]
  40. A. H. Hielscher, A. D. Klose, and K. M. Hanson, “Gradient-based iterative image reconstruction scheme for time-resolved optical tomography,” IEEE Trans. Med. Imag. 18, 262–271 (1999).
    [CrossRef]
  41. J. Spanier and E. M. Gelbard, Monte Carlo Principles and Neutron Transport Problems (Addison-Wesley, Reading, Mass., 1969).
  42. B. Jain, P. K. Gupta, V. A. Podzyavnikov, and V. K. Chevokin, “Development and characterization of a UV-visible streak camera and its use for time resolved fluorescence studies on human tissues,” Proc. National Laser Symposium, B.A.R.C., Mumbai, India, January 17–19, 1996, National Laser Program, Department of Atomic Energy, Government of India, C3–C4 (1996).
  43. B. Kanmani and R. M. Vasu, “Diffuse optical tomography using intensity measurements and the a priori acquired regions of interest: theory and simulations,” Phy. Med. Biol. 50, 247–264 (2005).
    [CrossRef]
  44. D. A. Boas, J. P. Culver, J. J. Stott, and A. K. Dunn, “Three dimensional Monte Carlo code for photon migration through complex heterogeneous media including the adult human head,” Opt. Express 10, 159–170 (2002), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-3-159
    [PubMed]

2005 (1)

B. Kanmani and R. M. Vasu, “Diffuse optical tomography using intensity measurements and the a priori acquired regions of interest: theory and simulations,” Phy. Med. Biol. 50, 247–264 (2005).
[CrossRef]

2004 (2)

Y. Phaneendra Kumar and R. M. Vasu, “Reconstruction of optical properties of low-scattering tissue using derivative estimated through perturbation Monte-Carlo method,” J. Biomed. Opt. 9, 1002–1012 (2004).
[CrossRef] [PubMed]

Y. Xu, Q. Zhang, and H. Jiang, “Optical image reconstruction of non-scattering and low scattering heterogeneities in turbid media based on the diffusion approximation model,” J. Opt. A: Pure Appl. Opt. 6, 29–35 (2004).
[CrossRef]

2003 (4)

2002 (3)

A. D. Klose, U. Netz, J. Beuthan, and A. H. Hielscher, “Optical tomography using the time-independent equation of radiative transfer - Part 1:forward model,” J. Quant. Spectrosc. Radiat. Transf. 72, 691–713 (2002).
[CrossRef]

A. D. Klose and A. H. Hielscher, “Optical tomography using the time-independent equation of radiative transfer - Part 2:inverse model,” J. Quant. Spectrosc. Radiat. Transf. 72, 715–732 (2002).
[CrossRef]

D. A. Boas, J. P. Culver, J. J. Stott, and A. K. Dunn, “Three dimensional Monte Carlo code for photon migration through complex heterogeneous media including the adult human head,” Opt. Express 10, 159–170 (2002), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-3-159
[PubMed]

2001 (3)

2000 (4)

1999 (6)

H. Jiang, “Optical image reconstruction based on the third-order diffusion equations,” Opt. Express 4, 241–246 (1999), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-4-8-241
[CrossRef] [PubMed]

A. D. Klose and A. H. Hielscher, “Iterative reconstruction scheme for optical tomography based on the equation of radiative transfer,” Med. Phys. 26, 1698–1707 (1999).
[CrossRef] [PubMed]

J. C. Ye, K. J. Webb, R. P. Millane, and T. J. Downar, “Modified distorted Born iterative method with an approximate Frechet derivative for optical diffusion tomography,” J. Opt. Soc. Am. A 16, 1814–1826 (1999).
[CrossRef]

S. R. Arridge, “Optical tomography in medical imaging,” Inverse Problems 15, R41–R93 (1999).
[CrossRef]

M. Wolf, M. Keel, V. Dietz, K. von Siebenthal, H. U. Bucher, and O. Baenziger, “The influence of a clear layer on near-infrared spectrophotometry measurements using a liquid neonatal head phantom,” Phys. Med. Biol. 44, 1743–1753 (1999).
[CrossRef] [PubMed]

A. H. Hielscher, A. D. Klose, and K. M. Hanson, “Gradient-based iterative image reconstruction scheme for time-resolved optical tomography,” IEEE Trans. Med. Imag. 18, 262–271 (1999).
[CrossRef]

1998 (5)

O. Dorn, “A transport-backtransport method for optical tomography,” Inverse Problems 14, 1107–1130 (1998).
[CrossRef]

A. Sassaroli, C. Blumetti, F. Martelli, L. Alianelli, D. Contini, A. Ismaelli, and G. Zaccanti, “Monte Carlo procedure for investigating light propagation and imaging of highly scattering media,” Appl. Opt. 37, 7392–7400 (1998).
[CrossRef]

S. R. Arridge and W. R. B. Lionheart, “Nonuniqueness in diffusion-based optical tomography,” Opt. Lett. 23, 882–884 (1998).
[CrossRef]

A. D. Klose, A. H. Hielscher, K. M. Hanson, and J. Beuthan, “Three-dimensional optical tomography of a finger joint model for diagnostic of rheumatoid arthritis,” Proc. SPIE 3566, 151–159(1998).
[CrossRef]

M. Firbank, E. Okada, and D. T. Delpy, “A theoretical study of the signal contribution of regions of the adult head to near infrared spectroscopy studies of visual evoked responses,” Neuroimage 8, 69–78 (1998).
[CrossRef] [PubMed]

1997 (4)

A. D. Klose, V. Prapavat, O. Minet, J. Beuthan, and G. Muller, “RA diagnostics applying optical tomography in frequency-domain,” Proc. SPIE 3196, 194–204 (1997).
[CrossRef]

E. Okada, M. Firbank, M. Schweiger, S. R. Arridge, M. Cope, and D. T. Delpy, “Theoretical and experimental investigation of near-infrared light propagation in a model of the adult head,” Appl. Opt. 36, 21–31 (1997).
[CrossRef] [PubMed]

J. C. Hebden, S. R. Arridge, and D. T. Delpy, “Optical imaging in medicine. I. Experimental techniques,” Phys. Med. Biol. 42, 825–840 (1997).
[CrossRef] [PubMed]

S. R. Arridge and J. C. Hebden, “Optical imaging in medicine. II. Modelling and reconstruction,” Phys. Med. Biol. 42, 841–853 (1997).
[CrossRef] [PubMed]

1996 (1)

M. Firbank, S. R. Arridge, M. Schweiger, and D. T. Delpy, “An investigation of light transport through scattering bodies with nonscattering regions,” Phys. Med. Biol. 41, 767–783 (1996).
[CrossRef] [PubMed]

1995 (2)

A. Yodh and B. Chance, “Spectroscopy and Imaging with diffusing light,” Phy. Today 48, 34–40 (1995).
[CrossRef]

F. Natterer and F. Wübbeling, “A propagation-backpropagation method for ultrasound tomography,” Inverse Problems 11, 1225–1232 (1995).
[CrossRef]

1993 (1)

S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20, 299–309 (1993).
[CrossRef] [PubMed]

1988 (1)

N. Herschkowitz, “Brain development in the fetus, neonate and infant, Biol. Neonate 54, 1–19 (1988)
[CrossRef] [PubMed]

Alianelli, L.

Arridge, S. R.

H. Dehghani, S. R. Arridge, M. Schweiger, and D. T. Delpy, “Optical tomography in the presence of void regions,” J. Opt. Soc. Am. A 17, 1659–1670 (2000).
[CrossRef]

J. Ripoll, N. Nieto-Vesperinas, S. R. Arridge, and H. Dehghani, “Boundary conditions for light propagation in diffuse media with nonscattering regions,” J. Opt. Soc. Am. A 17, 1671–1681 (2000).
[CrossRef]

S. R. Arridge, H. Dehghani, M. Schweiger, and E. Okada, “The finite element model for the propagation of light scattering media: a direct method for domain with nonscattering regions,” Med. Phys. 27, 252–264 (2000).
[CrossRef] [PubMed]

S. R. Arridge, “Optical tomography in medical imaging,” Inverse Problems 15, R41–R93 (1999).
[CrossRef]

S. R. Arridge and W. R. B. Lionheart, “Nonuniqueness in diffusion-based optical tomography,” Opt. Lett. 23, 882–884 (1998).
[CrossRef]

J. C. Hebden, S. R. Arridge, and D. T. Delpy, “Optical imaging in medicine. I. Experimental techniques,” Phys. Med. Biol. 42, 825–840 (1997).
[CrossRef] [PubMed]

E. Okada, M. Firbank, M. Schweiger, S. R. Arridge, M. Cope, and D. T. Delpy, “Theoretical and experimental investigation of near-infrared light propagation in a model of the adult head,” Appl. Opt. 36, 21–31 (1997).
[CrossRef] [PubMed]

S. R. Arridge and J. C. Hebden, “Optical imaging in medicine. II. Modelling and reconstruction,” Phys. Med. Biol. 42, 841–853 (1997).
[CrossRef] [PubMed]

M. Firbank, S. R. Arridge, M. Schweiger, and D. T. Delpy, “An investigation of light transport through scattering bodies with nonscattering regions,” Phys. Med. Biol. 41, 767–783 (1996).
[CrossRef] [PubMed]

S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20, 299–309 (1993).
[CrossRef] [PubMed]

Baenziger, O.

M. Wolf, M. Keel, V. Dietz, K. von Siebenthal, H. U. Bucher, and O. Baenziger, “The influence of a clear layer on near-infrared spectrophotometry measurements using a liquid neonatal head phantom,” Phys. Med. Biol. 44, 1743–1753 (1999).
[CrossRef] [PubMed]

Barbour, R. L.

Beuthan, J.

A. D. Klose, U. Netz, J. Beuthan, and A. H. Hielscher, “Optical tomography using the time-independent equation of radiative transfer - Part 1:forward model,” J. Quant. Spectrosc. Radiat. Transf. 72, 691–713 (2002).
[CrossRef]

A. D. Klose, A. H. Hielscher, K. M. Hanson, and J. Beuthan, “Three-dimensional optical tomography of a finger joint model for diagnostic of rheumatoid arthritis,” Proc. SPIE 3566, 151–159(1998).
[CrossRef]

A. D. Klose, V. Prapavat, O. Minet, J. Beuthan, and G. Muller, “RA diagnostics applying optical tomography in frequency-domain,” Proc. SPIE 3196, 194–204 (1997).
[CrossRef]

Bevilacqua, F.

Blumetti, C.

Boas, D. A.

Bolster, M. B.

Bucher, H. U.

M. Wolf, M. Keel, V. Dietz, K. von Siebenthal, H. U. Bucher, and O. Baenziger, “The influence of a clear layer on near-infrared spectrophotometry measurements using a liquid neonatal head phantom,” Phys. Med. Biol. 44, 1743–1753 (1999).
[CrossRef] [PubMed]

Chance, B.

A. Yodh and B. Chance, “Spectroscopy and Imaging with diffusing light,” Phy. Today 48, 34–40 (1995).
[CrossRef]

Chandrasekhar, R.

R. Chandrasekhar, Radiation Transfer (Oxford, Clarendon, 1950).

Chevokin, V. K.

B. Jain, P. K. Gupta, V. A. Podzyavnikov, and V. K. Chevokin, “Development and characterization of a UV-visible streak camera and its use for time resolved fluorescence studies on human tissues,” Proc. National Laser Symposium, B.A.R.C., Mumbai, India, January 17–19, 1996, National Laser Program, Department of Atomic Energy, Government of India, C3–C4 (1996).

Contini, D.

Cope, M.

Culver, J. P.

Dehghani, H.

Delpy, D. T.

E. Okada and D. T. Delpy, “Near-infrared light propagation in an adult head model. II. Effect of superficial tissue thickness on the sensitivity of the near-infrared spectroscopy signal,” Appl. Opt. 42, 2915–2922 (2003).
[CrossRef] [PubMed]

E. Okada and D. T. Delpy, “Near-infrared light propagation in an adult head model. I. Modeling of low-level scattering in the cerebrospinal fluid layer,” Appl. Opt. 42, 2906–2914 (2003).
[CrossRef] [PubMed]

H. Dehghani, S. R. Arridge, M. Schweiger, and D. T. Delpy, “Optical tomography in the presence of void regions,” J. Opt. Soc. Am. A 17, 1659–1670 (2000).
[CrossRef]

H. Dehghani and D. T. Delpy, “Near-infrared spectroscopy of the adult head: effect of scattering and absorbing obstructions in the cerebrospinal fluid layer on light distribution in the tissue,” Appl. Opt. 39, 4721–4729 (2000).
[CrossRef]

M. Firbank, E. Okada, and D. T. Delpy, “A theoretical study of the signal contribution of regions of the adult head to near infrared spectroscopy studies of visual evoked responses,” Neuroimage 8, 69–78 (1998).
[CrossRef] [PubMed]

J. C. Hebden, S. R. Arridge, and D. T. Delpy, “Optical imaging in medicine. I. Experimental techniques,” Phys. Med. Biol. 42, 825–840 (1997).
[CrossRef] [PubMed]

E. Okada, M. Firbank, M. Schweiger, S. R. Arridge, M. Cope, and D. T. Delpy, “Theoretical and experimental investigation of near-infrared light propagation in a model of the adult head,” Appl. Opt. 36, 21–31 (1997).
[CrossRef] [PubMed]

M. Firbank, S. R. Arridge, M. Schweiger, and D. T. Delpy, “An investigation of light transport through scattering bodies with nonscattering regions,” Phys. Med. Biol. 41, 767–783 (1996).
[CrossRef] [PubMed]

S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20, 299–309 (1993).
[CrossRef] [PubMed]

Dietz, V.

M. Wolf, M. Keel, V. Dietz, K. von Siebenthal, H. U. Bucher, and O. Baenziger, “The influence of a clear layer on near-infrared spectrophotometry measurements using a liquid neonatal head phantom,” Phys. Med. Biol. 44, 1743–1753 (1999).
[CrossRef] [PubMed]

Dorn, O.

O. Dorn, “A transport-backtransport method for optical tomography,” Inverse Problems 14, 1107–1130 (1998).
[CrossRef]

Downar, T. J.

Dunn, A. K.

Durkin, Anthony J.

Firbank, M.

M. Firbank, E. Okada, and D. T. Delpy, “A theoretical study of the signal contribution of regions of the adult head to near infrared spectroscopy studies of visual evoked responses,” Neuroimage 8, 69–78 (1998).
[CrossRef] [PubMed]

E. Okada, M. Firbank, M. Schweiger, S. R. Arridge, M. Cope, and D. T. Delpy, “Theoretical and experimental investigation of near-infrared light propagation in a model of the adult head,” Appl. Opt. 36, 21–31 (1997).
[CrossRef] [PubMed]

M. Firbank, S. R. Arridge, M. Schweiger, and D. T. Delpy, “An investigation of light transport through scattering bodies with nonscattering regions,” Phys. Med. Biol. 41, 767–783 (1996).
[CrossRef] [PubMed]

Gelbard, E. M.

J. Spanier and E. M. Gelbard, Monte Carlo Principles and Neutron Transport Problems (Addison-Wesley, Reading, Mass., 1969).

George, J. S.

Graber, H. L.

Gupta, P. K.

B. Jain, P. K. Gupta, V. A. Podzyavnikov, and V. K. Chevokin, “Development and characterization of a UV-visible streak camera and its use for time resolved fluorescence studies on human tissues,” Proc. National Laser Symposium, B.A.R.C., Mumbai, India, January 17–19, 1996, National Laser Program, Department of Atomic Energy, Government of India, C3–C4 (1996).

Hanson, K. M.

A. H. Hielscher, A. D. Klose, and K. M. Hanson, “Gradient-based iterative image reconstruction scheme for time-resolved optical tomography,” IEEE Trans. Med. Imag. 18, 262–271 (1999).
[CrossRef]

A. D. Klose, A. H. Hielscher, K. M. Hanson, and J. Beuthan, “Three-dimensional optical tomography of a finger joint model for diagnostic of rheumatoid arthritis,” Proc. SPIE 3566, 151–159(1998).
[CrossRef]

Hayakawa, C. K.

Hebden, J. C.

J. C. Hebden, D. A. Boas, J. S. George, and Anthony J. Durkin, “Topics in Biomedical Optics: Introduction,” Appl. Opt. 42, 2869–2870 (2003).
[CrossRef]

S. R. Arridge and J. C. Hebden, “Optical imaging in medicine. II. Modelling and reconstruction,” Phys. Med. Biol. 42, 841–853 (1997).
[CrossRef] [PubMed]

J. C. Hebden, S. R. Arridge, and D. T. Delpy, “Optical imaging in medicine. I. Experimental techniques,” Phys. Med. Biol. 42, 825–840 (1997).
[CrossRef] [PubMed]

Herschkowitz, N.

N. Herschkowitz, “Brain development in the fetus, neonate and infant, Biol. Neonate 54, 1–19 (1988)
[CrossRef] [PubMed]

Hielscher, A. H.

A. D. Klose and A. H. Hielscher, “Quasi-Newton methods in optical tomographic image reconstruction,” Inverse Problems 14, 387–403 (2003).
[CrossRef]

A. D. Klose, U. Netz, J. Beuthan, and A. H. Hielscher, “Optical tomography using the time-independent equation of radiative transfer - Part 1:forward model,” J. Quant. Spectrosc. Radiat. Transf. 72, 691–713 (2002).
[CrossRef]

A. D. Klose and A. H. Hielscher, “Optical tomography using the time-independent equation of radiative transfer - Part 2:inverse model,” J. Quant. Spectrosc. Radiat. Transf. 72, 715–732 (2002).
[CrossRef]

A. H. Hielscher, A. D. Klose, and K. M. Hanson, “Gradient-based iterative image reconstruction scheme for time-resolved optical tomography,” IEEE Trans. Med. Imag. 18, 262–271 (1999).
[CrossRef]

A. D. Klose and A. H. Hielscher, “Iterative reconstruction scheme for optical tomography based on the equation of radiative transfer,” Med. Phys. 26, 1698–1707 (1999).
[CrossRef] [PubMed]

A. D. Klose, A. H. Hielscher, K. M. Hanson, and J. Beuthan, “Three-dimensional optical tomography of a finger joint model for diagnostic of rheumatoid arthritis,” Proc. SPIE 3566, 151–159(1998).
[CrossRef]

Hiraoka, M.

S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20, 299–309 (1993).
[CrossRef] [PubMed]

Iftimia, N. V.

Ishimaru, A.

A. Ishimaru, Wave Propagation and Scattering in Random Media (IEEE Press, New York, 1997).

Ismaelli, A.

Jain, B.

B. Jain, P. K. Gupta, V. A. Podzyavnikov, and V. K. Chevokin, “Development and characterization of a UV-visible streak camera and its use for time resolved fluorescence studies on human tissues,” Proc. National Laser Symposium, B.A.R.C., Mumbai, India, January 17–19, 1996, National Laser Program, Department of Atomic Energy, Government of India, C3–C4 (1996).

Jiang, H.

Kanmani, B.

B. Kanmani and R. M. Vasu, “Diffuse optical tomography using intensity measurements and the a priori acquired regions of interest: theory and simulations,” Phy. Med. Biol. 50, 247–264 (2005).
[CrossRef]

Keel, M.

M. Wolf, M. Keel, V. Dietz, K. von Siebenthal, H. U. Bucher, and O. Baenziger, “The influence of a clear layer on near-infrared spectrophotometry measurements using a liquid neonatal head phantom,” Phys. Med. Biol. 44, 1743–1753 (1999).
[CrossRef] [PubMed]

Key, L. L.

Klose, A. D.

A. D. Klose and A. H. Hielscher, “Quasi-Newton methods in optical tomographic image reconstruction,” Inverse Problems 14, 387–403 (2003).
[CrossRef]

A. D. Klose, U. Netz, J. Beuthan, and A. H. Hielscher, “Optical tomography using the time-independent equation of radiative transfer - Part 1:forward model,” J. Quant. Spectrosc. Radiat. Transf. 72, 691–713 (2002).
[CrossRef]

A. D. Klose and A. H. Hielscher, “Optical tomography using the time-independent equation of radiative transfer - Part 2:inverse model,” J. Quant. Spectrosc. Radiat. Transf. 72, 715–732 (2002).
[CrossRef]

A. H. Hielscher, A. D. Klose, and K. M. Hanson, “Gradient-based iterative image reconstruction scheme for time-resolved optical tomography,” IEEE Trans. Med. Imag. 18, 262–271 (1999).
[CrossRef]

A. D. Klose and A. H. Hielscher, “Iterative reconstruction scheme for optical tomography based on the equation of radiative transfer,” Med. Phys. 26, 1698–1707 (1999).
[CrossRef] [PubMed]

A. D. Klose, A. H. Hielscher, K. M. Hanson, and J. Beuthan, “Three-dimensional optical tomography of a finger joint model for diagnostic of rheumatoid arthritis,” Proc. SPIE 3566, 151–159(1998).
[CrossRef]

A. D. Klose, V. Prapavat, O. Minet, J. Beuthan, and G. Muller, “RA diagnostics applying optical tomography in frequency-domain,” Proc. SPIE 3196, 194–204 (1997).
[CrossRef]

Lionheart, W. R. B.

Martelli, F.

Millane, R. P.

Minet, O.

A. D. Klose, V. Prapavat, O. Minet, J. Beuthan, and G. Muller, “RA diagnostics applying optical tomography in frequency-domain,” Proc. SPIE 3196, 194–204 (1997).
[CrossRef]

Muller, G.

A. D. Klose, V. Prapavat, O. Minet, J. Beuthan, and G. Muller, “RA diagnostics applying optical tomography in frequency-domain,” Proc. SPIE 3196, 194–204 (1997).
[CrossRef]

Natterer, F.

F. Natterer and F. Wübbeling, “A propagation-backpropagation method for ultrasound tomography,” Inverse Problems 11, 1225–1232 (1995).
[CrossRef]

Netz, U.

A. D. Klose, U. Netz, J. Beuthan, and A. H. Hielscher, “Optical tomography using the time-independent equation of radiative transfer - Part 1:forward model,” J. Quant. Spectrosc. Radiat. Transf. 72, 691–713 (2002).
[CrossRef]

Nieto-Vesperinas, N.

Okada, E.

Pei, Y.

Phaneendra Kumar, Y.

Y. Phaneendra Kumar and R. M. Vasu, “Reconstruction of optical properties of low-scattering tissue using derivative estimated through perturbation Monte-Carlo method,” J. Biomed. Opt. 9, 1002–1012 (2004).
[CrossRef] [PubMed]

Podzyavnikov, V. A.

B. Jain, P. K. Gupta, V. A. Podzyavnikov, and V. K. Chevokin, “Development and characterization of a UV-visible streak camera and its use for time resolved fluorescence studies on human tissues,” Proc. National Laser Symposium, B.A.R.C., Mumbai, India, January 17–19, 1996, National Laser Program, Department of Atomic Energy, Government of India, C3–C4 (1996).

Prapavat, V.

A. D. Klose, V. Prapavat, O. Minet, J. Beuthan, and G. Muller, “RA diagnostics applying optical tomography in frequency-domain,” Proc. SPIE 3196, 194–204 (1997).
[CrossRef]

Ripoll, J.

Sassaroli, A.

Schweiger, M.

H. Dehghani, S. R. Arridge, M. Schweiger, and D. T. Delpy, “Optical tomography in the presence of void regions,” J. Opt. Soc. Am. A 17, 1659–1670 (2000).
[CrossRef]

S. R. Arridge, H. Dehghani, M. Schweiger, and E. Okada, “The finite element model for the propagation of light scattering media: a direct method for domain with nonscattering regions,” Med. Phys. 27, 252–264 (2000).
[CrossRef] [PubMed]

E. Okada, M. Firbank, M. Schweiger, S. R. Arridge, M. Cope, and D. T. Delpy, “Theoretical and experimental investigation of near-infrared light propagation in a model of the adult head,” Appl. Opt. 36, 21–31 (1997).
[CrossRef] [PubMed]

M. Firbank, S. R. Arridge, M. Schweiger, and D. T. Delpy, “An investigation of light transport through scattering bodies with nonscattering regions,” Phys. Med. Biol. 41, 767–783 (1996).
[CrossRef] [PubMed]

S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20, 299–309 (1993).
[CrossRef] [PubMed]

Spanier, J.

Stott, J. J.

Tromberg, B. J.

Vasu, R. M.

B. Kanmani and R. M. Vasu, “Diffuse optical tomography using intensity measurements and the a priori acquired regions of interest: theory and simulations,” Phy. Med. Biol. 50, 247–264 (2005).
[CrossRef]

Y. Phaneendra Kumar and R. M. Vasu, “Reconstruction of optical properties of low-scattering tissue using derivative estimated through perturbation Monte-Carlo method,” J. Biomed. Opt. 9, 1002–1012 (2004).
[CrossRef] [PubMed]

Venugopalan, V.

von Siebenthal, K.

M. Wolf, M. Keel, V. Dietz, K. von Siebenthal, H. U. Bucher, and O. Baenziger, “The influence of a clear layer on near-infrared spectrophotometry measurements using a liquid neonatal head phantom,” Phys. Med. Biol. 44, 1743–1753 (1999).
[CrossRef] [PubMed]

Webb, K. J.

Wolf, M.

M. Wolf, M. Keel, V. Dietz, K. von Siebenthal, H. U. Bucher, and O. Baenziger, “The influence of a clear layer on near-infrared spectrophotometry measurements using a liquid neonatal head phantom,” Phys. Med. Biol. 44, 1743–1753 (1999).
[CrossRef] [PubMed]

Wübbeling, F.

F. Natterer and F. Wübbeling, “A propagation-backpropagation method for ultrasound tomography,” Inverse Problems 11, 1225–1232 (1995).
[CrossRef]

Xu, Y.

Y. Xu, Q. Zhang, and H. Jiang, “Optical image reconstruction of non-scattering and low scattering heterogeneities in turbid media based on the diffusion approximation model,” J. Opt. A: Pure Appl. Opt. 6, 29–35 (2004).
[CrossRef]

Y. Xu, N. V. Iftimia, H. Jiang, L. L. Key, and M. B. Bolster, “Imaging of in vitro and in vivo bones and joints with continuous-wave diffuse optical tomography,” Opt. Express 8, 447–451 (2001), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-7-447
[CrossRef] [PubMed]

Ye, J. C.

Yodh, A.

A. Yodh and B. Chance, “Spectroscopy and Imaging with diffusing light,” Phy. Today 48, 34–40 (1995).
[CrossRef]

You, J. S.

Zaccanti, G.

Zhang, Q.

Y. Xu, Q. Zhang, and H. Jiang, “Optical image reconstruction of non-scattering and low scattering heterogeneities in turbid media based on the diffusion approximation model,” J. Opt. A: Pure Appl. Opt. 6, 29–35 (2004).
[CrossRef]

Appl. Opt. (6)

Biol. Neonate (1)

N. Herschkowitz, “Brain development in the fetus, neonate and infant, Biol. Neonate 54, 1–19 (1988)
[CrossRef] [PubMed]

IEEE Trans. Med. Imag. (1)

A. H. Hielscher, A. D. Klose, and K. M. Hanson, “Gradient-based iterative image reconstruction scheme for time-resolved optical tomography,” IEEE Trans. Med. Imag. 18, 262–271 (1999).
[CrossRef]

Inverse Problems (4)

F. Natterer and F. Wübbeling, “A propagation-backpropagation method for ultrasound tomography,” Inverse Problems 11, 1225–1232 (1995).
[CrossRef]

S. R. Arridge, “Optical tomography in medical imaging,” Inverse Problems 15, R41–R93 (1999).
[CrossRef]

O. Dorn, “A transport-backtransport method for optical tomography,” Inverse Problems 14, 1107–1130 (1998).
[CrossRef]

A. D. Klose and A. H. Hielscher, “Quasi-Newton methods in optical tomographic image reconstruction,” Inverse Problems 14, 387–403 (2003).
[CrossRef]

J. Biomed. Opt. (1)

Y. Phaneendra Kumar and R. M. Vasu, “Reconstruction of optical properties of low-scattering tissue using derivative estimated through perturbation Monte-Carlo method,” J. Biomed. Opt. 9, 1002–1012 (2004).
[CrossRef] [PubMed]

J. Opt. A: Pure Appl. Opt. (1)

Y. Xu, Q. Zhang, and H. Jiang, “Optical image reconstruction of non-scattering and low scattering heterogeneities in turbid media based on the diffusion approximation model,” J. Opt. A: Pure Appl. Opt. 6, 29–35 (2004).
[CrossRef]

J. Opt. Soc. Am. A (3)

J. Quant. Spectrosc. Radiat. Transf. (2)

A. D. Klose, U. Netz, J. Beuthan, and A. H. Hielscher, “Optical tomography using the time-independent equation of radiative transfer - Part 1:forward model,” J. Quant. Spectrosc. Radiat. Transf. 72, 691–713 (2002).
[CrossRef]

A. D. Klose and A. H. Hielscher, “Optical tomography using the time-independent equation of radiative transfer - Part 2:inverse model,” J. Quant. Spectrosc. Radiat. Transf. 72, 715–732 (2002).
[CrossRef]

Med. Phys. (3)

A. D. Klose and A. H. Hielscher, “Iterative reconstruction scheme for optical tomography based on the equation of radiative transfer,” Med. Phys. 26, 1698–1707 (1999).
[CrossRef] [PubMed]

S. R. Arridge, H. Dehghani, M. Schweiger, and E. Okada, “The finite element model for the propagation of light scattering media: a direct method for domain with nonscattering regions,” Med. Phys. 27, 252–264 (2000).
[CrossRef] [PubMed]

S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20, 299–309 (1993).
[CrossRef] [PubMed]

Neuroimage (1)

M. Firbank, E. Okada, and D. T. Delpy, “A theoretical study of the signal contribution of regions of the adult head to near infrared spectroscopy studies of visual evoked responses,” Neuroimage 8, 69–78 (1998).
[CrossRef] [PubMed]

Opt. Express (4)

Opt. Lett. (2)

Phy. Med. Biol. (1)

B. Kanmani and R. M. Vasu, “Diffuse optical tomography using intensity measurements and the a priori acquired regions of interest: theory and simulations,” Phy. Med. Biol. 50, 247–264 (2005).
[CrossRef]

Phy. Today (1)

A. Yodh and B. Chance, “Spectroscopy and Imaging with diffusing light,” Phy. Today 48, 34–40 (1995).
[CrossRef]

Phys. Med. Biol. (4)

J. C. Hebden, S. R. Arridge, and D. T. Delpy, “Optical imaging in medicine. I. Experimental techniques,” Phys. Med. Biol. 42, 825–840 (1997).
[CrossRef] [PubMed]

S. R. Arridge and J. C. Hebden, “Optical imaging in medicine. II. Modelling and reconstruction,” Phys. Med. Biol. 42, 841–853 (1997).
[CrossRef] [PubMed]

M. Wolf, M. Keel, V. Dietz, K. von Siebenthal, H. U. Bucher, and O. Baenziger, “The influence of a clear layer on near-infrared spectrophotometry measurements using a liquid neonatal head phantom,” Phys. Med. Biol. 44, 1743–1753 (1999).
[CrossRef] [PubMed]

M. Firbank, S. R. Arridge, M. Schweiger, and D. T. Delpy, “An investigation of light transport through scattering bodies with nonscattering regions,” Phys. Med. Biol. 41, 767–783 (1996).
[CrossRef] [PubMed]

Proc. SPIE (2)

A. D. Klose, V. Prapavat, O. Minet, J. Beuthan, and G. Muller, “RA diagnostics applying optical tomography in frequency-domain,” Proc. SPIE 3196, 194–204 (1997).
[CrossRef]

A. D. Klose, A. H. Hielscher, K. M. Hanson, and J. Beuthan, “Three-dimensional optical tomography of a finger joint model for diagnostic of rheumatoid arthritis,” Proc. SPIE 3566, 151–159(1998).
[CrossRef]

Other (7)

J. Spanier and E. M. Gelbard, Monte Carlo Principles and Neutron Transport Problems (Addison-Wesley, Reading, Mass., 1969).

B. Jain, P. K. Gupta, V. A. Podzyavnikov, and V. K. Chevokin, “Development and characterization of a UV-visible streak camera and its use for time resolved fluorescence studies on human tissues,” Proc. National Laser Symposium, B.A.R.C., Mumbai, India, January 17–19, 1996, National Laser Program, Department of Atomic Energy, Government of India, C3–C4 (1996).

R. Chandrasekhar, Radiation Transfer (Oxford, Clarendon, 1950).

A. Ishimaru, Wave Propagation and Scattering in Random Media (IEEE Press, New York, 1997).

B. Chance, R. R. Alfano, B. J. Tromberg, M. Tamura, and E. M. Sevick-Muraca, ed., Optical Tomography and Spectroscopy of Tissue IV, Proc. SPIE4250 (2001).

B. Chance and R. R. Alfano, ed., Optical tomography and spectroscopy of tissue: Theory, instrumentation, model, and human studies, Proc. SPIE2979 (1997).

B. Chance and R. R. Alfano, ed., Optical tomography, photon migration and spectroscopy of tissue and model media: theory, human studies, and instrumentation, Proc. SPIE2389 (1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

The flowchart used in the iterative reconstruction. The inner loop uses a gradient search algorithm to output update vectors for the optical properties.

Fig. 2.
Fig. 2.

Schematic diagram of the time-domain experimental setup.

Fig. 3.
Fig. 3.

Reconstruction of µa-distribution obtained from PBP approach with experimental data from tissue-equivalent phantom with only µa-inhomogeneity (a). Original µa-distribution: Background µab and µsb are 0.008 mm–1 and 0.05 mm-1 respectively, and the inclusion has µain=0.021 mm-1 and µsin=0.05 mm-1. (b). Reconstruction of (a). The reconstructed µainhomogeneity value at its centre is µain=0.028 mm-1.

Fig. 4.
Fig. 4.

Reconstruction of µs-distribution obtained from PBP approach with experimental data from tissue-equivalent phantom with only µs-inhomogeneity (a). Original µa-distribution: Background µab and µsb are 0.08 mm–1 and 0.05 mm-1 respectively, and the inclusion has µain=0.08 mm-1 and µsin=0.14 mm-1. (b). Reconstruction of (a). The reconstructed µsinhomogeneity value at its centre is µsin=0.18 mm -1.

Fig. 5.
Fig. 5.

Simultaneous reconstruction of µa and µs inclusions from the experimental data obtained from the composite phantom using the PBP approach (a). Original µa distribution with background µab=0.008 mm-1 µsb=0.05 mm-1 and inclusion has µina=0.021 mm-1 (b). Original µs distribution: background is same as (a) and the inclusion µsin=0.14 mm-1. Reconstruction of (c). µa-inhomogeneity and (d). µs-inhomogeneity. The reconstructed optical properties at centers of inhomogeneities are µain=0.028 mm-1 and µsin=0.21 mm-1.

Fig. 6.
Fig. 6.

Simulation results for Fig. 3(a). (a). Reconstructed µa-image with a priori information about the location of the inhomogeneity (0.018 mm-1 at the centre). (b). Reconstructed image without a priori information about the location of the inhomogeneity (0.019 mm-1 at the centre).

Fig. 7.
Fig. 7.

Simulation result for Fig. 4(a). Reconstructed µs-image with a priori information about the location of the inhomogeneity (0.16 mm-1 at the centre).

Fig. 8.
Fig. 8.

Simulation results for Fig. 5(a) & (b). (a). Reconstructed µa-image with a priori information about the location of the inhomogeneity (0.019 mm-1 at the centre). (b). Reconstructed µs-image without a priori information about the location of the inhomogeneity (0.13 mm -1 at the centre).

Fig. 9.
Fig. 9.

Comparison of horizontal cross-sections at y=41 mm of the reconstructed images.

Fig. 10.
Fig. 10.

Diffusion equation based reconstruction results for Fig. 5(a) and (b) from the simulated data without noise. (a). Reconstructed µa-image (0.011 mm -1 at the centre). (b). Reconstructed µs-image (0.06 mm -1 at the centre).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

w ̅ = w ( μ ̅ s μ ̅ t μ s μ t ) n ( μ ̅ t μ t ) n exp [ ( μ ̅ t μ t ) l ]

Metrics