Abstract

Experimental results for imaging the low-scattering tissue phantoms based on the derivative estimation through perturbation Monte-Carlo (pMC) method are presented. It is proven that pMC-based methods give superior reconstructions compared to diffusion-based reconstruction methods. An easy way to estimate the Jacobian using analytical expression obtained from perturbation Monte-Carlo method is employed. Simulation studies on the same objects, considered in the experiment, are performed and corresponding results are found to be in reasonable agreement with the experimental studies. It is shown that inter-parameter cross talk in diffusion based methods lead to false results for the low-scattering tissue, where as the pMC-based method gives accurate results.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. J. C. Hebden, D. A. Boas, J. S. George, and Anthony J. Durkin, �??Topics in Biomedical Optics: Introduction,�?? Appl. Opt. 42, 2869-2870 (2003).
    [CrossRef]
  2. B. Chance, R. R. Alfano, B. J. Tromberg, M. Tamura, and E. M. Sevick-Muraca, ed., Optical Tomography and Spectroscopy of Tissue IV, Proc. SPIE 4250 (2001).
  3. B. Chance and R. R. Alfano, ed., Optical tomography and spectroscopy of tissue: Theory, instrumentation, model, and human studies, Proc. SPIE 2979 (1997).
  4. B. Chance and R. R. Alfano, ed., Optical tomography, photon migration and spectroscopy of tissue and model media: theory, human studies, and instrumentation, Proc. SPIE 2389 (1995).
  5. A. Yodh and B. Chance, �??Spectroscopy and Imaging with diffusing light,�?? Phy. Today 48, 34�??40 (1995).
    [CrossRef]
  6. J. C. Hebden, S. R. Arridge, and D. T. Delpy, �??Optical imaging in medicine. I. Experimental techniques,�?? Phys. Med. Biol. 42, 825�??840 (1997).
    [CrossRef] [PubMed]
  7. S. R. Arridge and J. C. Hebden, �??Optical imaging in medicine. II. Modelling and reconstruction,�?? Phys. Med. Biol. 42, 841�??853 (1997).
    [CrossRef] [PubMed]
  8. S. R. Arridge, �??Optical tomography in medical imaging,�?? Inverse Problems 15, R41�??R93 (1999).
    [CrossRef]
  9. R. Chandrasekhar, Radiation Transfer (Oxford, Clarendon, 1950).
  10. A. Ishimaru, Wave Propagation and Scattering in Random Media (IEEE Press, New York, 1997).
  11. M. Firbank, S. R. Arridge, M. Schweiger, and D. T. Delpy, �??An investigation of light transport through scattering bodies with nonscattering regions,�?? Phys. Med. Biol. 41, 767�??783 (1996).
    [CrossRef] [PubMed]
  12. J. Ripoll, N. Nieto-Vesperinas, S. R. Arridge, and H. Dehghani, �??Boundary conditions for light propagation in diffuse media with nonscattering regions,�?? J. Opt. Soc. Am. A 17, 1671�??1681 (2000).
    [CrossRef]
  13. H. Dehghani, S. R. Arridge, M. Schweiger, and D. T. Delpy, �??Optical tomography in the presence of void regions,�?? J. Opt. Soc. Am. A 17, 1659�??1670 (2000).
    [CrossRef]
  14. Y. Xu, Q. Zhang and H. Jiang, �??Optical image reconstruction of non-scattering and low scattering heterogeneities in turbid media based on the diffusion approximation model,�?? J. Opt. A: Pure Appl. Opt. 6, 29�??35 (2004).
    [CrossRef]
  15. E. Okada, M. Firbank, M. Schweiger, S. R. Arridge, M. Cope, and D. T. Delpy, �??Theoretical and experimental investigation of near-infrared light propagation in a model of the adult head,�?? Appl. Opt. 36, 21�??31 (1997).
    [CrossRef] [PubMed]
  16. M. Wolf, M. Keel, V. Dietz, K. von Siebenthal, H. U. Bucher, and O. Baenziger, �??The influence of a clear layer on near-infrared spectrophotometry measurements using a liquid neonatal head phantom,�?? Phys. Med. Biol. 44, 1743�??1753 (1999).
    [CrossRef] [PubMed]
  17. H. Dehghani and D. T. Delpy, �??Near-infrared spectroscopy of the adult head: effect of scattering and absorbing obstructions in the cerebrospinal fluid layer on light distribution in the tissue,�?? Appl. Opt. 39, 4721�??4729 (2000).
    [CrossRef]
  18. E. Okada and D. T. Delpy, �??Near-infrared light propagation in an adult head model. I. Modeling of low-level scattering in the cerebrospinal fluid layer,�?? Appl. Opt. 42, 2906�??2914 (2003).
    [CrossRef] [PubMed]
  19. E. Okada and D. T. Delpy, �??Near-infrared light propagation in an adult head model. II. Effect of superficial tissue thickness on the sensitivity of the near-infrared spectroscopy signal,�?? Appl. Opt. 42, 2915�??2922 (2003).
    [CrossRef] [PubMed]
  20. A. D. Klose, V. Prapavat, O. Minet, J. Beuthan, and G. Muller, �??RA diagnostics applying optical tomography in frequency-domain,�?? Proc. SPIE 3196, 194�??204 (1997).
    [CrossRef]
  21. A. D. Klose, A. H. Hielscher, K. M. Hanson, and J. Beuthan, �??Three-dimensional optical tomography of a finger joint model for diagnostic of rheumatoid arthritis,�?? Proc. SPIE 3566, 151�??159(1998).
    [CrossRef]
  22. Y. Xu, N. V. Iftimia, H. Jiang, L. L. Key, and M. B. Bolster, "Imaging of in vitro and in vivo bones and joints with continuous-wave diffuse optical tomography," Opt. Express 8, 447-451 (2001), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-7-447">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-7-447</a>
    [CrossRef] [PubMed]
  23. O. Dorn, �??A transport-backtransport method for optical tomography,�?? Inverse Problems 14, 1107-1130 (1998).
    [CrossRef]
  24. A. D. Klose and A. H. Hielscher, �??Iterative reconstruction scheme for optical tomography based on the equation of radiative transfer,�?? Med. Phys. 26, 1698-1707 (1999).
    [CrossRef] [PubMed]
  25. A. D. Klose, U. Netz, J. Beuthan, and A. H. Hielscher, �??Optical tomography using the time-independent equation of radiative transfer �?? Part 1:forward model,�?? J. Quant. Spectrosc. Radiat. Transf. 72, 691-713 (2002).
    [CrossRef]
  26. A. D. Klose and A. H. Hielscher, �??Optical tomography using the time-independent equation of radiative transfer �?? Part 2:inverse model,�?? J. Quant. Spectrosc. Radiat. Transf. 72, 715-732 (2002).
    [CrossRef]
  27. A. D. Klose and A. H. Hielscher, �??Quasi-Newton methods in optical tomographic image reconstruction,�?? Inverse Problems 14, 387-403 (2003).
    [CrossRef]
  28. M. Firbank, E. Okada, and D. T. Delpy, �??A theoretical study of the signal contribution of regions of the adult head to near infrared spectroscopy studies of visual evoked responses,�?? Neuroimage 8, 69�??78 (1998).
    [CrossRef] [PubMed]
  29. S. R. Arridge, H. Dehghani, M. Schweiger, and E. Okada, �??The finite element model for the propagation of light scattering media: a direct method for domain with nonscattering regions,�?? Med. Phys. 27, 252�??264 (2000).
    [CrossRef] [PubMed]
  30. H. Jiang, "Optical image reconstruction based on the third-order diffusion equations ," Opt. Express 4, 241-246 (1999), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-4-8-241">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-4-8-241</a>
    [CrossRef] [PubMed]
  31. N. Herschkowitz, �??Brain development in the fetus, neonate and infant, Biol. Neonate 54, 1-19 (1988)
    [CrossRef] [PubMed]
  32. S. R. Arridge and W. R. B. Lionheart, �??Nonuniqueness in diffusion�??based optical tomography,�?? Opt. Lett. 23, 882�??884 (1998).
    [CrossRef]
  33. Y. Pei, H. L. Graber, and R. L. Barbour, "Normalized-constraint algorithm for minimizing inter-parameter crosstalk in DC optical tomography," Opt. Express 9, 97-109 (2001), <a href= " http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-2-97">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-2-97</a>
    [CrossRef] [PubMed]
  34. J. C. Ye, K. J. Webb, R. P. Millane, and T. J. Downar, �??Modified distorted Born iterative method with an approximate Frechet derivative for optical diffusion tomography,�?? J. Opt. Soc. Am. A 16, 1814-1826 (1999).
    [CrossRef]
  35. A. Sassaroli, C. Blumetti, F. Martelli, L. Alianelli, D. Contini, A. Ismaelli, and G. Zaccanti, �??Monte Carlo procedure for investigating light propagation and imaging of highly scattering media,�?? Appl. Opt. 37, 7392�?? 7400 (1998).
    [CrossRef]
  36. C. K. Hayakawa, J. Spanier, F. Bevilacqua, A. K. Dunn, J. S. You, B. J. Tromberg, and V. Venugopalan, �??Perturbation Monte Carlo methods to solve inverse photon migration problems in heterogeneous tissues,�?? Opt. Lett. 26, 1335-1337 (2001).
    [CrossRef]
  37. Y. Phaneendra Kumar and R. M. Vasu, �??Reconstruction of optical properties of low-scattering tissue using derivative estimated through perturbation Monte-Carlo method,�?? J. Biomed. Opt. 9, 1002-1012 (2004).
    [CrossRef] [PubMed]
  38. F. Natterer and F. Wübbeling, �??A propagation-backpropagation method for ultrasound tomography,�?? Inverse Problems 11, 1225-1232 (1995).
    [CrossRef]
  39. S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, �??A finite element approach for modeling photon transport in tissue,�?? Med. Phys. 20, 299-309 (1993).
    [CrossRef] [PubMed]
  40. A. H. Hielscher, A. D. Klose, and K. M. Hanson, �??Gradient-based iterative image reconstruction scheme for time-resolved optical tomography,�?? IEEE Trans. Med. Imag. 18, 262-271 (1999).
    [CrossRef]
  41. J. Spanier and E. M. Gelbard, Monte Carlo Principles and Neutron Transport Problems (Addison-Wesley, Reading, Mass., 1969).
  42. B. Jain, P. K. Gupta, V. A. Podzyavnikov, and V. K. Chevokin, �??Development and characterization of a UV-visible streak camera and its use for time resolved fluorescence studies on human tissues,�?? Proc. National Laser Symposium, B.A.R.C., Mumbai, India, January 17-19, 1996, National Laser Program, Department of Atomic Energy, Government of India, C3-C4 (1996).
  43. B. Kanmani and R. M. Vasu, �??Diffuse optical tomography using intensity measurements and the a priori acquired regions of interest: theory and simulations,�?? Phy. Med. Biol. 50, 247-264 (2005).
    [CrossRef]
  44. D. A. Boas, J. P. Culver, J. J. Stott, and A. K. Dunn, �??Three dimensional Monte Carlo code for photon migration through complex heterogeneous media including the adult human head,�?? Opt. Express 10, 159-170 (2002), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-3-159">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-3-159 </a>
    [PubMed]

Appl. Opt. (7)

J. C. Hebden, D. A. Boas, J. S. George, and Anthony J. Durkin, �??Topics in Biomedical Optics: Introduction,�?? Appl. Opt. 42, 2869-2870 (2003).
[CrossRef]

Y. Xu, Q. Zhang and H. Jiang, �??Optical image reconstruction of non-scattering and low scattering heterogeneities in turbid media based on the diffusion approximation model,�?? J. Opt. A: Pure Appl. Opt. 6, 29�??35 (2004).
[CrossRef]

E. Okada, M. Firbank, M. Schweiger, S. R. Arridge, M. Cope, and D. T. Delpy, �??Theoretical and experimental investigation of near-infrared light propagation in a model of the adult head,�?? Appl. Opt. 36, 21�??31 (1997).
[CrossRef] [PubMed]

H. Dehghani and D. T. Delpy, �??Near-infrared spectroscopy of the adult head: effect of scattering and absorbing obstructions in the cerebrospinal fluid layer on light distribution in the tissue,�?? Appl. Opt. 39, 4721�??4729 (2000).
[CrossRef]

E. Okada and D. T. Delpy, �??Near-infrared light propagation in an adult head model. I. Modeling of low-level scattering in the cerebrospinal fluid layer,�?? Appl. Opt. 42, 2906�??2914 (2003).
[CrossRef] [PubMed]

E. Okada and D. T. Delpy, �??Near-infrared light propagation in an adult head model. II. Effect of superficial tissue thickness on the sensitivity of the near-infrared spectroscopy signal,�?? Appl. Opt. 42, 2915�??2922 (2003).
[CrossRef] [PubMed]

A. Sassaroli, C. Blumetti, F. Martelli, L. Alianelli, D. Contini, A. Ismaelli, and G. Zaccanti, �??Monte Carlo procedure for investigating light propagation and imaging of highly scattering media,�?? Appl. Opt. 37, 7392�?? 7400 (1998).
[CrossRef]

Biol. Neonate (1)

N. Herschkowitz, �??Brain development in the fetus, neonate and infant, Biol. Neonate 54, 1-19 (1988)
[CrossRef] [PubMed]

IEEE Trans. Med. Imag. (1)

A. H. Hielscher, A. D. Klose, and K. M. Hanson, �??Gradient-based iterative image reconstruction scheme for time-resolved optical tomography,�?? IEEE Trans. Med. Imag. 18, 262-271 (1999).
[CrossRef]

Inverse Problems (4)

F. Natterer and F. Wübbeling, �??A propagation-backpropagation method for ultrasound tomography,�?? Inverse Problems 11, 1225-1232 (1995).
[CrossRef]

O. Dorn, �??A transport-backtransport method for optical tomography,�?? Inverse Problems 14, 1107-1130 (1998).
[CrossRef]

A. D. Klose and A. H. Hielscher, �??Quasi-Newton methods in optical tomographic image reconstruction,�?? Inverse Problems 14, 387-403 (2003).
[CrossRef]

S. R. Arridge, �??Optical tomography in medical imaging,�?? Inverse Problems 15, R41�??R93 (1999).
[CrossRef]

J. Biomed. (1)

Y. Phaneendra Kumar and R. M. Vasu, �??Reconstruction of optical properties of low-scattering tissue using derivative estimated through perturbation Monte-Carlo method,�?? J. Biomed. Opt. 9, 1002-1012 (2004).
[CrossRef] [PubMed]

J. Opt. Soc. Am A (1)

J. C. Ye, K. J. Webb, R. P. Millane, and T. J. Downar, �??Modified distorted Born iterative method with an approximate Frechet derivative for optical diffusion tomography,�?? J. Opt. Soc. Am. A 16, 1814-1826 (1999).
[CrossRef]

J. Opt. Soc. Am. A (2)

J. Quant. Spectrosc. Radiat. Transf. (2)

A. D. Klose, U. Netz, J. Beuthan, and A. H. Hielscher, �??Optical tomography using the time-independent equation of radiative transfer �?? Part 1:forward model,�?? J. Quant. Spectrosc. Radiat. Transf. 72, 691-713 (2002).
[CrossRef]

A. D. Klose and A. H. Hielscher, �??Optical tomography using the time-independent equation of radiative transfer �?? Part 2:inverse model,�?? J. Quant. Spectrosc. Radiat. Transf. 72, 715-732 (2002).
[CrossRef]

Med. Phys. (2)

A. D. Klose and A. H. Hielscher, �??Iterative reconstruction scheme for optical tomography based on the equation of radiative transfer,�?? Med. Phys. 26, 1698-1707 (1999).
[CrossRef] [PubMed]

S. R. Arridge, H. Dehghani, M. Schweiger, and E. Okada, �??The finite element model for the propagation of light scattering media: a direct method for domain with nonscattering regions,�?? Med. Phys. 27, 252�??264 (2000).
[CrossRef] [PubMed]

S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, �??A finite element approach for modeling photon transport in tissue,�?? Med. Phys. 20, 299-309 (1993).
[CrossRef] [PubMed]

National Laser Symposium 1996 (1)

B. Jain, P. K. Gupta, V. A. Podzyavnikov, and V. K. Chevokin, �??Development and characterization of a UV-visible streak camera and its use for time resolved fluorescence studies on human tissues,�?? Proc. National Laser Symposium, B.A.R.C., Mumbai, India, January 17-19, 1996, National Laser Program, Department of Atomic Energy, Government of India, C3-C4 (1996).

Neuroimage (1)

M. Firbank, E. Okada, and D. T. Delpy, �??A theoretical study of the signal contribution of regions of the adult head to near infrared spectroscopy studies of visual evoked responses,�?? Neuroimage 8, 69�??78 (1998).
[CrossRef] [PubMed]

Opt. Express (4)

Opt. Lett. (2)

Phy. Med. Biol. (1)

B. Kanmani and R. M. Vasu, �??Diffuse optical tomography using intensity measurements and the a priori acquired regions of interest: theory and simulations,�?? Phy. Med. Biol. 50, 247-264 (2005).
[CrossRef]

Phy. Today (1)

A. Yodh and B. Chance, �??Spectroscopy and Imaging with diffusing light,�?? Phy. Today 48, 34�??40 (1995).
[CrossRef]

Phys. Med. Biol. (4)

J. C. Hebden, S. R. Arridge, and D. T. Delpy, �??Optical imaging in medicine. I. Experimental techniques,�?? Phys. Med. Biol. 42, 825�??840 (1997).
[CrossRef] [PubMed]

S. R. Arridge and J. C. Hebden, �??Optical imaging in medicine. II. Modelling and reconstruction,�?? Phys. Med. Biol. 42, 841�??853 (1997).
[CrossRef] [PubMed]

M. Wolf, M. Keel, V. Dietz, K. von Siebenthal, H. U. Bucher, and O. Baenziger, �??The influence of a clear layer on near-infrared spectrophotometry measurements using a liquid neonatal head phantom,�?? Phys. Med. Biol. 44, 1743�??1753 (1999).
[CrossRef] [PubMed]

M. Firbank, S. R. Arridge, M. Schweiger, and D. T. Delpy, �??An investigation of light transport through scattering bodies with nonscattering regions,�?? Phys. Med. Biol. 41, 767�??783 (1996).
[CrossRef] [PubMed]

Proc. SPIE (4)

A. D. Klose, A. H. Hielscher, K. M. Hanson, and J. Beuthan, �??Three-dimensional optical tomography of a finger joint model for diagnostic of rheumatoid arthritis,�?? Proc. SPIE 3566, 151�??159(1998).
[CrossRef]

B. Chance, R. R. Alfano, B. J. Tromberg, M. Tamura, and E. M. Sevick-Muraca, ed., Optical Tomography and Spectroscopy of Tissue IV, Proc. SPIE 4250 (2001).

B. Chance and R. R. Alfano, ed., Optical tomography and spectroscopy of tissue: Theory, instrumentation, model, and human studies, Proc. SPIE 2979 (1997).

B. Chance and R. R. Alfano, ed., Optical tomography, photon migration and spectroscopy of tissue and model media: theory, human studies, and instrumentation, Proc. SPIE 2389 (1995).

SPIE 1997 (1)

A. D. Klose, V. Prapavat, O. Minet, J. Beuthan, and G. Muller, �??RA diagnostics applying optical tomography in frequency-domain,�?? Proc. SPIE 3196, 194�??204 (1997).
[CrossRef]

Other (3)

R. Chandrasekhar, Radiation Transfer (Oxford, Clarendon, 1950).

A. Ishimaru, Wave Propagation and Scattering in Random Media (IEEE Press, New York, 1997).

J. Spanier and E. M. Gelbard, Monte Carlo Principles and Neutron Transport Problems (Addison-Wesley, Reading, Mass., 1969).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

The flowchart used in the iterative reconstruction. The inner loop uses a gradient search algorithm to output update vectors for the optical properties.

Fig. 2.
Fig. 2.

Schematic diagram of the time-domain experimental setup.

Fig. 3.
Fig. 3.

Reconstruction of µa-distribution obtained from PBP approach with experimental data from tissue-equivalent phantom with only µa-inhomogeneity (a). Original µa-distribution: Background µab and µsb are 0.008 mm–1 and 0.05 mm-1 respectively, and the inclusion has µain=0.021 mm-1 and µsin=0.05 mm-1. (b). Reconstruction of (a). The reconstructed µainhomogeneity value at its centre is µain=0.028 mm-1.

Fig. 4.
Fig. 4.

Reconstruction of µs-distribution obtained from PBP approach with experimental data from tissue-equivalent phantom with only µs-inhomogeneity (a). Original µa-distribution: Background µab and µsb are 0.08 mm–1 and 0.05 mm-1 respectively, and the inclusion has µain=0.08 mm-1 and µsin=0.14 mm-1. (b). Reconstruction of (a). The reconstructed µsinhomogeneity value at its centre is µsin=0.18 mm -1.

Fig. 5.
Fig. 5.

Simultaneous reconstruction of µa and µs inclusions from the experimental data obtained from the composite phantom using the PBP approach (a). Original µa distribution with background µab=0.008 mm-1 µsb=0.05 mm-1 and inclusion has µina=0.021 mm-1 (b). Original µs distribution: background is same as (a) and the inclusion µsin=0.14 mm-1. Reconstruction of (c). µa-inhomogeneity and (d). µs-inhomogeneity. The reconstructed optical properties at centers of inhomogeneities are µain=0.028 mm-1 and µsin=0.21 mm-1.

Fig. 6.
Fig. 6.

Simulation results for Fig. 3(a). (a). Reconstructed µa-image with a priori information about the location of the inhomogeneity (0.018 mm-1 at the centre). (b). Reconstructed image without a priori information about the location of the inhomogeneity (0.019 mm-1 at the centre).

Fig. 7.
Fig. 7.

Simulation result for Fig. 4(a). Reconstructed µs-image with a priori information about the location of the inhomogeneity (0.16 mm-1 at the centre).

Fig. 8.
Fig. 8.

Simulation results for Fig. 5(a) & (b). (a). Reconstructed µa-image with a priori information about the location of the inhomogeneity (0.019 mm-1 at the centre). (b). Reconstructed µs-image without a priori information about the location of the inhomogeneity (0.13 mm -1 at the centre).

Fig. 9.
Fig. 9.

Comparison of horizontal cross-sections at y=41 mm of the reconstructed images.

Fig. 10.
Fig. 10.

Diffusion equation based reconstruction results for Fig. 5(a) and (b) from the simulated data without noise. (a). Reconstructed µa-image (0.011 mm -1 at the centre). (b). Reconstructed µs-image (0.06 mm -1 at the centre).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

w ̅ = w ( μ ̅ s μ ̅ t μ s μ t ) n ( μ ̅ t μ t ) n exp [ ( μ ̅ t μ t ) l ]

Metrics