Abstract

A GaAs/GaAlAs-based asymmetric microcavity structure was studied by various optical characterization techniques. The angle-dependent reflectance (R) spectra showed that the cavity mode (CM) superimposed on quantum well excitonic transitions. The resonance enhancement effect between the excitonic transitions and the CM in the weak-coupling regime was explored using the angle-dependent differential surface photovoltage spectroscopy (DSPS) and photoluminescence (PL), and temperature-dependent PL. In this work, we have also implemented a new modulation technique, namely, the angle modulation reflectance (AMR) to decouple the CM from the overlapped excitonic transitions. The AMR technique has been demonstrated to be an efficient method for the study of weak coupling effect in the microcavity structure.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. G. Du, K. A. Stair, G. Devane, J. Zhang, R. P. H. Chang, C. W. White, X. Li, Z. Wang, and Y. Liu, "Vertical-cavity surface-emitting laser with a thin metal mirror fabricated by double implantation using a tungsten wire mask," Semicond. Sci. Technol. 11, 1734-1736 (1996).
    [CrossRef]
  2. C. J. Chang-Hasnain, "Tunable VCSEL," IEEE J. Sel. Top. Quantum Electron 6, 978-987 (2000).
    [CrossRef]
  3. H. C. Lin, D. A. Louderback, G. W. Pickrell, M. A. Fish, J. J. Hindi, M. C. Simpson, and P. S. Guilfoyle, "Vertical-cavity surface-emitting lasers with monolithically integrated horizontal waveguides," IEEE Photonics Technol. Lett. 17, 10-12 (2005).
    [CrossRef]
  4. C. M. Tsai and C. P. Lee, "High-performance two-wavelength asymmetric Fabry-Perot modulator with a decoupled cavity design," IEEE J. Quantum Electron. 34, 427-430 (1998).
    [CrossRef]
  5. P. Royo, R. P. Stanley, M. Ilegems, K. Streubel, and K. H. Gulden, "Experimental determination of the internal quantum efficiency of AlGaInP microcavity light-emitting diodes," J. Appl. Phys. 91, 2563-2568 (2002).
    [CrossRef]
  6. P. K. H. Ho, D. S. Thomas, R. H. Friend, and N. Tessler, "All-polymer optoelectronic devices," Science 285, 233-236 (1999).
    [CrossRef] [PubMed]
  7. E. F. Schubert, Y. H. Wang, A. Y. Cho, L. W. Tu, and G. J. Zydzik, "Resonant cavity light-emitting diode," Appl. Phys. Lett. 60, 921-923 (1992).
    [CrossRef]
  8. A. Kavokin, G. Malpuech, and B. Gil, "Semiconductor microcavities: towards polariton lasers," MRS Internet J. Nitride Semicond. Res. 8, 1-25 (2003).
  9. S. D. Brorson, H. Yokoyama, and E. P. Ippen, "Spontaneous emission rate alteration in optical waveguide structures," IEEE J. Quantum Electron. 26, 1492-1499 (1990).
    [CrossRef]
  10. M. Yamanishi, "Combined quantum effects for electron and photon systems in semiconductor microcavity light emitters," Prog. Quantum Electron. 19, 1-39 (1995).
    [CrossRef]
  11. T. Baba, T. Hamano, F. Koyama, and K. Iga, "Spontaneous emission factor of a microcavity DBR surface-emitting laser," IEEE J. Quantum Electron. 27, 1347-1358 (1991)
    [CrossRef]
  12. H. Yokoyama, K. Nishi, T. Anan, H. Yamada, S. D. Brorson, and E. P. Ippen, "Enhanced spontaneous emission from GaAs quantum wells in monolithic microcavities," Appl. Phys. Lett. 57, 2814-2816 (1990).
    [CrossRef]
  13. E. L. Ivchenko, M. A. Kaliteevski, A. V. Kavokin, and A. I. Nesvizhskii, "Reflection and absorption spectra from microcavities with resonant Bragg quantum wells," J. Opt. Soc. Am. B 13, 1061-1068 (1996).
    [CrossRef]
  14. A. V. Kavokin and M. A. Kaliteevski, "Light-absorption effect on Bragg interference in multilayer semiconductor heterostructures," J. Appl. Phys. 79, 595-598 (1996).
    [CrossRef]
  15. J. S. Liang, S. D. Wang, Y. S. Huang, L. Malikova, F. H. Pollak, J. P. Debray, R. Hoffman, A. Amtout, and R. A. Stall, "Differential surface photovoltage spectroscopy characterization of a 1.3 μm InGaAlAs/InP vertical-cavity surface-emitting laser structure," J. Appl. Phys. 93, 1874-1878 (2003).
    [CrossRef]
  16. J. L. Shen, C. Y. Chang, W. C. Chou, M. C. Wu, and Y. F. Chen, "Temperature dependence of the reflectivity in absorbing Bragg reflectors," Opt. Express 9, 287-293 (2001), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-6-287">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-6-287</a>
    [CrossRef] [PubMed]

Appl. Phys. Lett.

E. F. Schubert, Y. H. Wang, A. Y. Cho, L. W. Tu, and G. J. Zydzik, "Resonant cavity light-emitting diode," Appl. Phys. Lett. 60, 921-923 (1992).
[CrossRef]

H. Yokoyama, K. Nishi, T. Anan, H. Yamada, S. D. Brorson, and E. P. Ippen, "Enhanced spontaneous emission from GaAs quantum wells in monolithic microcavities," Appl. Phys. Lett. 57, 2814-2816 (1990).
[CrossRef]

IEEE J. Quantum Electron.

T. Baba, T. Hamano, F. Koyama, and K. Iga, "Spontaneous emission factor of a microcavity DBR surface-emitting laser," IEEE J. Quantum Electron. 27, 1347-1358 (1991)
[CrossRef]

S. D. Brorson, H. Yokoyama, and E. P. Ippen, "Spontaneous emission rate alteration in optical waveguide structures," IEEE J. Quantum Electron. 26, 1492-1499 (1990).
[CrossRef]

C. M. Tsai and C. P. Lee, "High-performance two-wavelength asymmetric Fabry-Perot modulator with a decoupled cavity design," IEEE J. Quantum Electron. 34, 427-430 (1998).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron

C. J. Chang-Hasnain, "Tunable VCSEL," IEEE J. Sel. Top. Quantum Electron 6, 978-987 (2000).
[CrossRef]

IEEE Photonics Technol. Lett.

H. C. Lin, D. A. Louderback, G. W. Pickrell, M. A. Fish, J. J. Hindi, M. C. Simpson, and P. S. Guilfoyle, "Vertical-cavity surface-emitting lasers with monolithically integrated horizontal waveguides," IEEE Photonics Technol. Lett. 17, 10-12 (2005).
[CrossRef]

J. Appl. Phys.

P. Royo, R. P. Stanley, M. Ilegems, K. Streubel, and K. H. Gulden, "Experimental determination of the internal quantum efficiency of AlGaInP microcavity light-emitting diodes," J. Appl. Phys. 91, 2563-2568 (2002).
[CrossRef]

A. V. Kavokin and M. A. Kaliteevski, "Light-absorption effect on Bragg interference in multilayer semiconductor heterostructures," J. Appl. Phys. 79, 595-598 (1996).
[CrossRef]

J. S. Liang, S. D. Wang, Y. S. Huang, L. Malikova, F. H. Pollak, J. P. Debray, R. Hoffman, A. Amtout, and R. A. Stall, "Differential surface photovoltage spectroscopy characterization of a 1.3 μm InGaAlAs/InP vertical-cavity surface-emitting laser structure," J. Appl. Phys. 93, 1874-1878 (2003).
[CrossRef]

J. Opt. Soc. Am. B

MRS Internet J. Nitride Semicond. Res.

A. Kavokin, G. Malpuech, and B. Gil, "Semiconductor microcavities: towards polariton lasers," MRS Internet J. Nitride Semicond. Res. 8, 1-25 (2003).

Opt. Express

Prog. Quantum Electron.

M. Yamanishi, "Combined quantum effects for electron and photon systems in semiconductor microcavity light emitters," Prog. Quantum Electron. 19, 1-39 (1995).
[CrossRef]

Science

P. K. H. Ho, D. S. Thomas, R. H. Friend, and N. Tessler, "All-polymer optoelectronic devices," Science 285, 233-236 (1999).
[CrossRef] [PubMed]

Semicond. Sci. Technol.

G. Du, K. A. Stair, G. Devane, J. Zhang, R. P. H. Chang, C. W. White, X. Li, Z. Wang, and Y. Liu, "Vertical-cavity surface-emitting laser with a thin metal mirror fabricated by double implantation using a tungsten wire mask," Semicond. Sci. Technol. 11, 1734-1736 (1996).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

The R and AMR (solid lines) spectra at the angle of incidence ranging from 10° to 60°. The middle region of the spectrum at 10° is enlarged for easy viewing of the features in the neighborhood of the small kink. The open circles are the least-squares fits to the first derivative Lorentzian line shape of the AMR spectra..

Fig. 2.
Fig. 2.

The DSPS (black solid lines) and the least-squares fits to the first derivative Lorentzian line shape (red open circles) at the angle of incidence ranging from 10° to 60°.

Fig. 3.
Fig. 3.

The black solid lines show the PL spectra at the angle of incidence in the range between 10° and 60°. The open circles are the least-squares fits to Gaussian profiles.

Fig. 4.
Fig. 4.

(a) The square and diamond symbols show the energies of 11H and 11L, respectively. The triangle symbols are the CM energies; (b) the square and diamond symbols show the 11H transition amplitude fitted from DSPS and PL spectra, respectively; (c) the square and diamond symbols show the 11L transition amplitude fitted from DSPS and PL spectra, respectively.

Fig. 5.
Fig. 5.

The PL (solid lines) spectra at different temperature and at the angle of incidence of 60°. The open circles are the least-squares fits to the first derivative Lorentzian line shape.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

λ CM ( θ ) = ( 2 dn / m ) ( 1 sin 2 θ / n 2 ) 1 / 2 = λ CM ( 0 o ) ( 1 sin 2 θ / n 2 ) 1 / 2 .

Metrics