Abstract

The propagation and combination of surface plasmon polaritons (SPPs) in Y-shaped metallic nanochannels are investigated numerically via finite difference time domain (FDTD). It is shown that the behavior of SPPs in nano-size channels resembles that of light guiding in conventional waveguides, and SPPs can also be combined effectively with appropriately designed structures. The loss associated with metal absorption and scattering with the multiple reflections between slit openings on the bend angle are analyzed numerically. The Fabry–Perot cavity effect displayed by SPPs traveling in channels with finite length is discussed as well.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. H. Raether, Surface plasmons on smooth and rough surfaces and on gratings (Springer, Heidelberg 1988).
  2. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio and P. A. Wolff, "Extraordinary optical transmission through subwavelength hole arrays," Nature 391, 667-669 (1998).
    [CrossRef]
  3. L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry and T.W. Ebbesen, "Theory of extraordinary optical transmission through subwavelength hole arrays," Phys. Rev. Lett. 86, 1114-1117 (2001).
    [CrossRef] [PubMed]
  4. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 820-822 (2002).
    [CrossRef] [PubMed]
  5. W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003).
    [CrossRef] [PubMed]
  6. Z. J. Sun and H. K. Kim, "Refractive transmission of light and beam shaping with metallic nano-optic lenses," Appl. Phys. Lett. 85, 642-644 (2003).
    [CrossRef]
  7. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T.W. Ebbessen, "Channel plasmon-polariton guiding by subwavelength metal grooves," Phys. Rev. Lett. 95, 046802 (2005).
    [CrossRef] [PubMed]
  8. K. Hasegawa, J. U. Nockel, and M. Deutsch, "Surface plasmon polaritons propagation around bends at a metal-dielectric interface," Appl. Phys. Lett. 84, 1835-1837 (2004).
    [CrossRef]
  9. K. Tanaka and M. Tanaka, "Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide," Appl. Phys. Lett. 82, 1158-1159 (2003).
    [CrossRef]
  10. X. Luo and T. Ishihara, "Subwavelength photolithography based on surface-plasmon polariton resonance," Opt. Express 12, 3055-3065 (2004) <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-14-3055.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-14-3055.</a>
    [CrossRef] [PubMed]
  11. X. Luo, H. Wang, J.P. Shi, and H. Yao, "Light propagation through unperforated metallic structure: Plasmon resonance induced transparency," Mod. Phys. Lett. B 18, 1181-1188 (2004).
    [CrossRef]
  12. X. Luo, J.P. Shi, H. Wang, and G. Yu, "Surface plasmon polariton radiation from metallic photonic crystal slabs breaking the diffraction limit: Nano-storage and nano-fabrication," Mod. Phys. Lett. B 18, 945-953 (2004).
    [CrossRef]
  13. X. Luo and T. Ishihara, "Sub-100-nm photolithography based on plasmon resonance," Japan. J. Appl. Phys. 43, 4017-4021 (2004).
    [CrossRef]
  14. X. Luo and T. Ishihara, "Surface plasmon resonant interference nanolithography technique," Appl. Phys. Lett. 84, 4780-4782 (2004).
    [CrossRef]
  15. H. F. Shi, C. T. Wang, C. L. Du, X. G. Luo, X. C. Dong, and H. T. Gao, "Beam manipulating by metallic nano-slits with variant widths," Opt. Express 13, 6815-6820 (2005)
    [CrossRef] [PubMed]
  16. X. Luo, Y. G. Lv, C. L. Du, J. X. Ma, H. Wang, H. Y. Li, G. R.Yang, and H. M. Yao, "Spatial distribution of surface plasmon polariton from metallic nanostructures," Mod. Phys. Lett. B 19, 599-606 (2005).
    [CrossRef]

Appl. Phys. Lett.

Z. J. Sun and H. K. Kim, "Refractive transmission of light and beam shaping with metallic nano-optic lenses," Appl. Phys. Lett. 85, 642-644 (2003).
[CrossRef]

K. Hasegawa, J. U. Nockel, and M. Deutsch, "Surface plasmon polaritons propagation around bends at a metal-dielectric interface," Appl. Phys. Lett. 84, 1835-1837 (2004).
[CrossRef]

K. Tanaka and M. Tanaka, "Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide," Appl. Phys. Lett. 82, 1158-1159 (2003).
[CrossRef]

X. Luo and T. Ishihara, "Surface plasmon resonant interference nanolithography technique," Appl. Phys. Lett. 84, 4780-4782 (2004).
[CrossRef]

Japan. J. Appl. Phys.

X. Luo and T. Ishihara, "Sub-100-nm photolithography based on plasmon resonance," Japan. J. Appl. Phys. 43, 4017-4021 (2004).
[CrossRef]

Mod. Phys. Lett. B

X. Luo, Y. G. Lv, C. L. Du, J. X. Ma, H. Wang, H. Y. Li, G. R.Yang, and H. M. Yao, "Spatial distribution of surface plasmon polariton from metallic nanostructures," Mod. Phys. Lett. B 19, 599-606 (2005).
[CrossRef]

X. Luo, H. Wang, J.P. Shi, and H. Yao, "Light propagation through unperforated metallic structure: Plasmon resonance induced transparency," Mod. Phys. Lett. B 18, 1181-1188 (2004).
[CrossRef]

X. Luo, J.P. Shi, H. Wang, and G. Yu, "Surface plasmon polariton radiation from metallic photonic crystal slabs breaking the diffraction limit: Nano-storage and nano-fabrication," Mod. Phys. Lett. B 18, 945-953 (2004).
[CrossRef]

Nature

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio and P. A. Wolff, "Extraordinary optical transmission through subwavelength hole arrays," Nature 391, 667-669 (1998).
[CrossRef]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003).
[CrossRef] [PubMed]

Opt. Express

Phys. Rev. Lett.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T.W. Ebbessen, "Channel plasmon-polariton guiding by subwavelength metal grooves," Phys. Rev. Lett. 95, 046802 (2005).
[CrossRef] [PubMed]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry and T.W. Ebbesen, "Theory of extraordinary optical transmission through subwavelength hole arrays," Phys. Rev. Lett. 86, 1114-1117 (2001).
[CrossRef] [PubMed]

Science

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 820-822 (2002).
[CrossRef] [PubMed]

Other

H. Raether, Surface plasmons on smooth and rough surfaces and on gratings (Springer, Heidelberg 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Dependence of complex propagation constant of SPPs in metallic channels on the channel width at the wavelength of 650 nm. The solid and dashed curves represent real and imaginary parts, respectively. The dotted curve corresponds to the propagation constant for the electromagnetic wave in a vacuum.

Fig. 2.
Fig. 2.

The schematic of the Y-shaped metallic channel for SPP combination.

Fig. 3.
Fig. 3.

Schematic of the cascaded Y-shaped metallic channels structure for four SPPs combined into one.

Fig. 4.
Fig. 4.

FDTD simulation result of Poynting vector Sz of the combination structure shown in Fig. 3 for λ = 650 nm and w= 30 nm.

Fig. 5.
Fig. 5.

Output intensity of the Y combiner of 2 to 1 with a different bend angle. The two arms are 150 nm long and the total length of the combiner is set to 400 nm. Channel width and wavelength are the same as in Fig. 4.

Fig. 6.
Fig. 6.

Output intensity for the Y combiner of 2 to 1 with different length of the stem channel. The bend angle here is 60° and arms length is 150 nm. Channels width and wavelength are as stated in Fig. 4.

Metrics