Abstract

We demonstrate self-pumped optical phase conjugation in Te-doped Sn2P2S6, a semiconducting ferroelectric crystal, using a 1.06 μm wavelength cw Nd:YAG laser. The photorefractive gain of this crystal has been increased to Γ = (3.9 ± 0.4)cm-1 by Te doping. We observed self-pumped optical phase conjugation in a ring cavity scheme with phase conjugate reflectivities of more than 40 percent and a very fast phase conjugate rise time below 100ms at a light intensity of 20 W/cm2. This is more than two orders of magnitude faster than in any other photorefractive crystal, as e.g. in Rh-doped BaTiO3.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. P. Günter, J.-P. Huignard, Photorefractive Materials and Their Applications I (Springer-Verlag, Berlin, 1988).
    [CrossRef]
  2. A. E. Chiou, P. Yeh, ”Laser-beam cleanup using photorefractive two-wave mixing and optical phase conjugation,” Opt. Lett. 11, 461-463 (1986).
    [CrossRef] [PubMed]
  3. A. Brignon, J. P. Huignard, M. H. Garrett, I. Mnushkina, ”Spatial beam cleanup of a Nd:YAG laser operating at 1.06 µm with two-wave mixing in Rh:BaTiO3,” Appl. Opt. 36, 7788-7793 (1997).
    [CrossRef]
  4. L. Lombard, A. Brignon, J. P. Huignard, E. Lallier, G. Lucas-Leclin, P. Pauliat, G. Roosen, ”Diffraction-limited polarized emission from a multimode ytterbium fiber amplifier after a nonlinear beam converter,” Opt. Lett. 29, 989-991 (2004).
    [CrossRef] [PubMed]
  5. G. Roosen, A. Godard, S. Maerten, V. Reboud, N. Dubreuil, G. Pauliat, ”Self-organization of laser cavities using dynamic holograms,” Opt. Mater. 23, 289-293 (2003).
    [CrossRef]
  6. K. Tei, F. Matsuoka, M. Kato, Y. Maruyama, T. Arisawa, ”Nd:YAG oscillator-amplifier system with a passive ring self-pumped phase-conjugate mirror,” Opt. Lett. 25, 481-483 (2000).
    [CrossRef]
  7. S. MacCormack, J. Feinberg, ”High-brightness output from a laser-diode array coupled to a phase-conjugating mirror,” Opt. Lett. 18, 211-213 (1993).
    [CrossRef] [PubMed]
  8. M. Ewart, R. Ryf, C. Medrano, H. Wüest, M. Zgonik, P. Günter, ”High photorefractive sensitivity at 860 nm in reduced rhodium-doped KNbO3,” Opt. Lett. 22, 781-783 (1997).
    [CrossRef] [PubMed]
  9. G.W. Ross, P. Hribek, R. W. Eason, M. H. Garrett, D. Rytz, ”Impurity enhanced self-pumped phase conjugation in the near infrared in ’blue’ BaTiO3,” Opt. Commun. 101, 60-64 (1993).
    [CrossRef]
  10. N. Huot, J. M. C. Jonathan, G. Roosen, ”Characterization and optimization of a ring self-pumped phase-conjugate mirror at 1.06 µm with BaTiO3:Rh,” J. Opt. Soc. Am. B 15, 1992-1999 (1998).
    [CrossRef]
  11. R. S. Cudney, M. Kaczmarek, ”Optical poling in Rh:BaTiO3” in Trends in Optics and Photonics, Vol. 62, pp. 485-489 (2001).
  12. M. B. Klein, ”Photorefractive Properties of BaTiO3” in [1] pp.195-236.
  13. G. Roosen, S. Bernhardt, P. Delaye, ”Ba0.77Ca0.23TiO3: a new photorefractive material to replace BaTiO3 in applications,” Opt. Mater. 23, 243-251 (2003).
    [CrossRef]
  14. M. Jazbinšek, G. Montemezzani, P. Günter, A. A. Grabar, I. M. Stoika, Y. M. Vysochanskii, ”Fast near-infrared self-pumped phase conjugation with photorefractive Sn2P2S6,” J. Opt. Soc. Am. B 20, 1241-1246 (2003).
    [CrossRef]
  15. M. Jazbinšek, D. Haertle, G. Montemezzani, P. Günter, A. A. Grabar, I. M. Stoika, Y. M. Vysochanskii, ”Wavelength dependence of visible and near infrared photorefraction and phase conjugation in Sn2P2S6,” J. Opt. Soc. Am. B 22, 2459-2467 (2005).
    [CrossRef]
  16. S. G. Odoulov, A. N. Shumelyuk, U. Hellwig, R. A. Rupp, A. A. Grabar, ”Photorefractive beam coupling in tin hypothiodiphosphate in the near infrared,” Opt. Lett. 21, 752-754 (1996).
    [CrossRef] [PubMed]
  17. C. D. Carpentier, R. Nitsche, ”Vapor growth and crystal data of thio(seleno)hypodiphosphates Sn2P2S6, Sn2P2Se6, Pb2P2S6, Pb2P2Se6 and their mixed crystals,” Mat. Res. Bull. 9, 401-410 (1974).
    [CrossRef]
  18. A. A. Grabar, I. V. Kedyk, M. I. Gurzan, I. M. Stoika, A. A. Molnar, Yu. M. Vysochanskii, ”Enhanced photorefractive properties of modified Sn2P2S6,” Opt. Commun. 188, 187-194 (2001).
    [CrossRef]
  19. M. Cronin-Golomb, B. Fischer, J. O. White, A. Yariv, ”Theory and applications of four-wave mixing in photorefractive media,” IEEE J. Quantum Electron. QE-20, 12-30 (1984).
    [CrossRef]
  20. A. A. Grabar, I. V. Kedyk, I. M. Stoika, Yu. M. Vysochanskii, M. Jazbinsek, G. Montemezzani, P. Günter ”Enhanced photorefractive properties of Te-doped Sn2P2S6,” in Trends in Optics and Photonics, Vol. 87, pp. 10-14 (2003).

Appl. Opt. (1)

IEEE J. Quantum Electron. (1)

M. Cronin-Golomb, B. Fischer, J. O. White, A. Yariv, ”Theory and applications of four-wave mixing in photorefractive media,” IEEE J. Quantum Electron. QE-20, 12-30 (1984).
[CrossRef]

J. Opt. Soc. Am. B (3)

Mat. Res. Bull. (1)

C. D. Carpentier, R. Nitsche, ”Vapor growth and crystal data of thio(seleno)hypodiphosphates Sn2P2S6, Sn2P2Se6, Pb2P2S6, Pb2P2Se6 and their mixed crystals,” Mat. Res. Bull. 9, 401-410 (1974).
[CrossRef]

Opt. Commun. (2)

A. A. Grabar, I. V. Kedyk, M. I. Gurzan, I. M. Stoika, A. A. Molnar, Yu. M. Vysochanskii, ”Enhanced photorefractive properties of modified Sn2P2S6,” Opt. Commun. 188, 187-194 (2001).
[CrossRef]

G.W. Ross, P. Hribek, R. W. Eason, M. H. Garrett, D. Rytz, ”Impurity enhanced self-pumped phase conjugation in the near infrared in ’blue’ BaTiO3,” Opt. Commun. 101, 60-64 (1993).
[CrossRef]

Opt. Lett. (6)

Opt. Mater. (2)

G. Roosen, A. Godard, S. Maerten, V. Reboud, N. Dubreuil, G. Pauliat, ”Self-organization of laser cavities using dynamic holograms,” Opt. Mater. 23, 289-293 (2003).
[CrossRef]

G. Roosen, S. Bernhardt, P. Delaye, ”Ba0.77Ca0.23TiO3: a new photorefractive material to replace BaTiO3 in applications,” Opt. Mater. 23, 243-251 (2003).
[CrossRef]

Trends in Optics and Photonics (2)

A. A. Grabar, I. V. Kedyk, I. M. Stoika, Yu. M. Vysochanskii, M. Jazbinsek, G. Montemezzani, P. Günter ”Enhanced photorefractive properties of Te-doped Sn2P2S6,” in Trends in Optics and Photonics, Vol. 87, pp. 10-14 (2003).

R. S. Cudney, M. Kaczmarek, ”Optical poling in Rh:BaTiO3” in Trends in Optics and Photonics, Vol. 62, pp. 485-489 (2001).

Other (2)

M. B. Klein, ”Photorefractive Properties of BaTiO3” in [1] pp.195-236.

P. Günter, J.-P. Huignard, Photorefractive Materials and Their Applications I (Springer-Verlag, Berlin, 1988).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Experimental setup for optical self-pumped phase conjugation in a ring cavity scheme using a Te-doped Sn2P2S6 crystal. Additional neutral density filters ND-I and ND-II were used to vary the input beam intensity and the transmission of the loop respectively. The transmission grating in the crystal is written by beam 3 with its self-diffracted beam 4 and by beams 1 and 2 counterpropagating in the loop.

Fig. 2.
Fig. 2.

Temporal evolution of the phase conjugated reflectivity R after switching on the pump beam 3 at t = 0. A different time scale between 0.3 s and 2 s is showing the stable phase conjugated reflection.

Fig. 3.
Fig. 3.

Measured saturated phase conjugate reflectivity R as a function of the loop transmission T. The curves represent calculations for ΓL = 2.9 (solid curve) being in best conformance with the measurement and for ΓL = 2.6 (dashed curve), ΓL = 3.2 (dotted curve) for comparison.

Fig. 4.
Fig. 4.

Dependences of the reflectivity R as a function of the coupling strength ΓL for T|tL |4 = 0.71 (solid curve) and T|tL |4 = 0.42 (dashed curve). The corresponding highest experimental point of Fig. 3 and the point for a loop transmission of 0.6 are included.

Fig. 5.
Fig. 5.

Saturated phase conjugate reflectivity R as a function of the input intensity. The theoretical curve was calculated with T|tL |4 = 0.71, ΓL = 2.9 and considered an effective background intensity of Iβ = 0.9 W/cm2.

Fig. 6.
Fig. 6.

Response rate 1/τ 0 versus the incident intensity with a linear curve that corresponds the measurements.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

t 0 2 tanh κ L s + σ tanh κ L = s I 0 tanh κ L ( σ I 0 s 2 ) tanh κ L + ( I 0 σ ) s
s = [ σ 2 + ( I 0 σ ) 2 ρ 2 ] 1 / 2 , σ = I 0 t 0 2 1 t 0 2 + 1 ,
κ = s Γ * 4 I 0 .
κ = s Γ * 4 ( I 0 + I β ) .

Metrics