Abstract

Broadband coherent anti-Stokes Raman scattering (CARS) spectroscopy is used for detection of bacterial spores in aqueous solution. Polarization CARS spectroscopy is employed to suppress the non-resonant background. CARS spectrum recorded in the spectral region from 700 to 1900 cm-1 exhibits all the characteristic features of spontaneous Raman spectrum taken for a solid powder and resembles that one of the dipicolinic acid, which is considered to be the major component of bacterial spores, including anthrax.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. M. O. Scully, G. W. Kattawar, R. P. Lucht, T. Opatrny, H. Pilloff, A. Rebane, A. V. Sokolov, and M. S. Zubairy, �??FAST CARS: Engineering a laser spectroscopic technique for rapid identification of bacterial spores,�?? Proc. Nat, Acad. Sci. USA 99, 10994 (2002).
    [CrossRef]
  2. M. Mehendale, B. Bosacciii, E. Gatzigiannis, A. Dogariu, W. S. Warren, and M. O. Scully, �??Towards an anthrax detector using the femtosecond adaptive spectroscopic technique for coherent anti-Stokes Raman Spectrosopy: coherent anti-Stokes Raman spectroscopy signal from dipicolinic acid in bacterial spores,�?? J. Mod. Opt. 51, 2645 (2004).
    [CrossRef]
  3. W. Suen, T. G. Spiro, L. C. Sowers, and J. R. Fresco, �??Identification by UV resonance Raman spectroscopy of an imino tautomer of 5-hydroxy-2�?? deoxycytidine, a powerful base analog transition mutagen with a much higher unfavored tautomer frequency than that of the natural residue 2�??-deoxycytidine,�?? Proc. Nat, Acad. Sci. USA 96, 4500 (1999).
    [CrossRef]
  4. J. M. Chalmers, and P. R. Griffiths, eds., Handbook of Vibrational Spectroscopy, John Wiley & Sons, Inc. Chichester, 2002.
  5. R. K. Chang, and T. E. Furtak, eds., Surface Enhanced Raman Scattering, Plenum Press, New York, 1982.
    [CrossRef]
  6. R. P. Régnier and J. P. E. Taran, �??On the possibility of measuring gas concentrations by stimulated anti-Stokes scattering", Appl. Phys. Lett. 23, 24 (1973).
    [CrossRef]
  7. A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species. Abacus, Cambridge, MA, 1988.
  8. M. D. Duncan, J. Reintjes, and T. J. Manuccia, �??Scanning coherent anti-Stokes Raman microscope,�?? Opt. Lett. 7, 350-352 (1982).
    [CrossRef] [PubMed]
  9. A. Zumbusch, G. R. Holton, and X. S. Xie, �??Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,�?? Phys. Rev. Lett. 82, 4142-4145 (1999).
    [CrossRef]
  10. M. Hashimoto, and T. Araki, �??Molecular vibration imaging in the fingerprint region by use of coherent anti-Stokes Raman scattering microscopy with a collinear configuration,�?? Opt. Lett. 25, 1768-1770 (2000).
    [CrossRef]
  11. E. O. Potma, W. P. de Boeij, P. J. M. van Haastert, and D. A. Wiersma, �??Real-time visualization of intracellular hydrodynamics in single living cells,�?? Proc. Natl. Acad. Sci. 98, 1577-1582 (2001).
    [CrossRef] [PubMed]
  12. G. W. H. Wurpel, J. M. Schins, and M. Müller, �??Chemical specificity in three-dimensional imaging with multiplex coherent anti-Stokes Raman scattering microscopy,�?? Opt. Lett. 27, 1093-1095 (2002).
    [CrossRef]
  13. V. V. Yakovlev, �??Advanced instrumentation for non-linear Raman microscopy,�?? J. Raman Spectrosc. 34, 957-964 (2003).
    [CrossRef]
  14. D. L. Marks and S. A. Boppart, �??Nonlinear interferometric vibrational imaging,�?? Phys. Rev. Lett. 92,123905 (2004).
    [CrossRef] [PubMed]
  15. G. W. Gould and A. Hurst, eds., The Bacterial Spore. Academic Press, London, 1969.
  16. A. A. Kolomenskii, S. N. Jerebtsov, T. Opatrny, H. A. Schuessler, and M. O. Scully, �??Spontaneous Raman spectra of dipicolinic acid in microcrystalline form,�?? J. Mod. Opt. 50, 2369 (2003).
    [CrossRef]
  17. A. P. Esposito, C. E. Talley, T. Huser, C. W. Hollars, C. M. Schaldach, and S. M. Lane, �??Analysis of single bacterial spores by micro-Raman spectroscopy,�?? Appl. Spectrosc. 57, 868 (2003).
    [CrossRef] [PubMed]
  18. D. L. Popham and P. Setlow, �??Phenotypes of Bacillus subtilis mutants lacking multiple class A high-molecular-weight penicillin-binding�?? J. Bacteriol. 178, 2079 (1996).
    [PubMed]
  19. U. Utzinger, D. L. Heintzelman, A. Mahadevan-Jansen, A. Malpica, M. Follen, R. Richards-Kortum, �??Near-infrared Raman spectroscopy for in vivo detection of cervical precancers,�?? Appl. Spectrosc. 55, 955 (2001).
    [CrossRef]
  20. B. N. Toleutaev, T. Tahara, and H. Hamaguchi, �??Broad-band (1000 cm-1) multiplex CARS spectroscopy�??application to polarization-sensitive and time-resolved measurements,�?? Appl. Phys. B59, 369 (1994).
  21. V. H. Astinov and G. M. Georgiev, �??Ultrabroadband single-pulse CARS of liquids using a spatially dispersive Stokes beam,�?? Appl. Phys. B63, 62 (1996).
  22. G. I. Petrov and V. V. Yakovlev, �??Enhancing red-shifted white-light continuum generation in optical fibers for applications in nonlinear Raman microscopy,�?? Opt. Express 13, 1299 (2005), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-4-1299">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-4-1299</a>
    [CrossRef] [PubMed]
  23. J. L. Oudar, R. W. Smith, and Y. R. Shen, �??Polarization-sensitive coherent anti Stokes Raman spectroscopy,�?? Appl. Phys. Lett. 34, 758 (1979).
    [CrossRef]
  24. N. Dudovich, D. Oron, and Y. Silberberg, �??Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,�?? Nature 418, 512-514 (2002).
    [CrossRef] [PubMed]
  25. A. Weippert and W. Kiefer, �??CARS difference spectroscopy,�?? J. Raman Spectrosc. 23, 713 (1992).
    [CrossRef]
  26. X. Cheng, Y. K. Jia, G. F. Zheng, and X. S. Xie, �??Laser-scanning coherent anti-stokes Raman scattering microscopy and applications to cell biology,�?? Biophys. J. 83, 502-509 (2002).
    [CrossRef] [PubMed]
  27. A. Volkmer, �??Vibrational imaging and microspectroscopies based on coherent anti-Stokes Raman scattering microscopy,�?? J. Phys. D. 38, R59 (2005).
    [CrossRef]
  28. C. L. Evans, E. O. Potma, and X. S. Xie, �??Coherent anti-Stokes Raman scattering spectral interferometry: determination of the real and imaginary components of nonlinear susceptibility �?(3) for vibrational microscopy,�?? Opt. Lett. 29, 2923 (2004).
    [CrossRef]
  29. L. Ujj, B. Volodin, A. Popp, J. K. Delaney, and G. A. Atkinson, �??Picosecond resonance coherent anti-Stokes-Raman spectroscopy of bacteriorhodopsin �?? spectra and quantitative third-order susceptibility analysis of the light adapted BR-570,�?? Chem. Phys. 182, 291 (1994).
    [CrossRef]

Appl. Phys. B

B. N. Toleutaev, T. Tahara, and H. Hamaguchi, �??Broad-band (1000 cm-1) multiplex CARS spectroscopy�??application to polarization-sensitive and time-resolved measurements,�?? Appl. Phys. B59, 369 (1994).

V. H. Astinov and G. M. Georgiev, �??Ultrabroadband single-pulse CARS of liquids using a spatially dispersive Stokes beam,�?? Appl. Phys. B63, 62 (1996).

Appl. Phys. Lett.

J. L. Oudar, R. W. Smith, and Y. R. Shen, �??Polarization-sensitive coherent anti Stokes Raman spectroscopy,�?? Appl. Phys. Lett. 34, 758 (1979).
[CrossRef]

R. P. Régnier and J. P. E. Taran, �??On the possibility of measuring gas concentrations by stimulated anti-Stokes scattering", Appl. Phys. Lett. 23, 24 (1973).
[CrossRef]

Appl. Spectrosc.

A. P. Esposito, C. E. Talley, T. Huser, C. W. Hollars, C. M. Schaldach, and S. M. Lane, �??Analysis of single bacterial spores by micro-Raman spectroscopy,�?? Appl. Spectrosc. 57, 868 (2003).
[CrossRef] [PubMed]

U. Utzinger, D. L. Heintzelman, A. Mahadevan-Jansen, A. Malpica, M. Follen, R. Richards-Kortum, �??Near-infrared Raman spectroscopy for in vivo detection of cervical precancers,�?? Appl. Spectrosc. 55, 955 (2001).
[CrossRef]

Biophys. J.

X. Cheng, Y. K. Jia, G. F. Zheng, and X. S. Xie, �??Laser-scanning coherent anti-stokes Raman scattering microscopy and applications to cell biology,�?? Biophys. J. 83, 502-509 (2002).
[CrossRef] [PubMed]

Chem. Phys.

L. Ujj, B. Volodin, A. Popp, J. K. Delaney, and G. A. Atkinson, �??Picosecond resonance coherent anti-Stokes-Raman spectroscopy of bacteriorhodopsin �?? spectra and quantitative third-order susceptibility analysis of the light adapted BR-570,�?? Chem. Phys. 182, 291 (1994).
[CrossRef]

J. Bacteriol.

D. L. Popham and P. Setlow, �??Phenotypes of Bacillus subtilis mutants lacking multiple class A high-molecular-weight penicillin-binding�?? J. Bacteriol. 178, 2079 (1996).
[PubMed]

J. Mod. Opt.

M. Mehendale, B. Bosacciii, E. Gatzigiannis, A. Dogariu, W. S. Warren, and M. O. Scully, �??Towards an anthrax detector using the femtosecond adaptive spectroscopic technique for coherent anti-Stokes Raman Spectrosopy: coherent anti-Stokes Raman spectroscopy signal from dipicolinic acid in bacterial spores,�?? J. Mod. Opt. 51, 2645 (2004).
[CrossRef]

A. A. Kolomenskii, S. N. Jerebtsov, T. Opatrny, H. A. Schuessler, and M. O. Scully, �??Spontaneous Raman spectra of dipicolinic acid in microcrystalline form,�?? J. Mod. Opt. 50, 2369 (2003).
[CrossRef]

J. Phys. D.

A. Volkmer, �??Vibrational imaging and microspectroscopies based on coherent anti-Stokes Raman scattering microscopy,�?? J. Phys. D. 38, R59 (2005).
[CrossRef]

J. Raman Spectrosc.

A. Weippert and W. Kiefer, �??CARS difference spectroscopy,�?? J. Raman Spectrosc. 23, 713 (1992).
[CrossRef]

V. V. Yakovlev, �??Advanced instrumentation for non-linear Raman microscopy,�?? J. Raman Spectrosc. 34, 957-964 (2003).
[CrossRef]

Nature

N. Dudovich, D. Oron, and Y. Silberberg, �??Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,�?? Nature 418, 512-514 (2002).
[CrossRef] [PubMed]

Opt. Express

G. I. Petrov and V. V. Yakovlev, �??Enhancing red-shifted white-light continuum generation in optical fibers for applications in nonlinear Raman microscopy,�?? Opt. Express 13, 1299 (2005), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-4-1299">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-4-1299</a>
[CrossRef] [PubMed]

Opt. Lett.

Phys. Rev. Lett.

A. Zumbusch, G. R. Holton, and X. S. Xie, �??Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,�?? Phys. Rev. Lett. 82, 4142-4145 (1999).
[CrossRef]

Phyys. Rev. Lett.

D. L. Marks and S. A. Boppart, �??Nonlinear interferometric vibrational imaging,�?? Phys. Rev. Lett. 92,123905 (2004).
[CrossRef] [PubMed]

Proc. Nat. Acad. Sci.

M. O. Scully, G. W. Kattawar, R. P. Lucht, T. Opatrny, H. Pilloff, A. Rebane, A. V. Sokolov, and M. S. Zubairy, �??FAST CARS: Engineering a laser spectroscopic technique for rapid identification of bacterial spores,�?? Proc. Nat, Acad. Sci. USA 99, 10994 (2002).
[CrossRef]

W. Suen, T. G. Spiro, L. C. Sowers, and J. R. Fresco, �??Identification by UV resonance Raman spectroscopy of an imino tautomer of 5-hydroxy-2�?? deoxycytidine, a powerful base analog transition mutagen with a much higher unfavored tautomer frequency than that of the natural residue 2�??-deoxycytidine,�?? Proc. Nat, Acad. Sci. USA 96, 4500 (1999).
[CrossRef]

Proc. Natl. Acad. Sci.

E. O. Potma, W. P. de Boeij, P. J. M. van Haastert, and D. A. Wiersma, �??Real-time visualization of intracellular hydrodynamics in single living cells,�?? Proc. Natl. Acad. Sci. 98, 1577-1582 (2001).
[CrossRef] [PubMed]

Other

G. W. Gould and A. Hurst, eds., The Bacterial Spore. Academic Press, London, 1969.

J. M. Chalmers, and P. R. Griffiths, eds., Handbook of Vibrational Spectroscopy, John Wiley & Sons, Inc. Chichester, 2002.

R. K. Chang, and T. E. Furtak, eds., Surface Enhanced Raman Scattering, Plenum Press, New York, 1982.
[CrossRef]

A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species. Abacus, Cambridge, MA, 1988.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Raman spectrum from B. subtilis spores recorded as it is (a), and with digital background subtraction (b).

Fig. 2.
Fig. 2.

Schematic diagram of the experimental CARS set-up [22].

Fig. 3.
Fig. 3.

The experimentally measured CARS spectrum of bacterial spores in water solution (10mg/mL) - (b) and (d), compared with the experimentally measured spontaneous Raman spectrum of bacterial spores in a powder form (a) and (c).

Metrics