Abstract

The super-resolution capability of the AgOx-type super-resolution near-field structure disk with silver nanoparticles was studied using finite-difference time-domain method at different incident light frequencies. The near fields exhibited strongly local field enhancement around silver nanoparticles in the AgOx layer due to localized surface plasmon. The subwavelength recording marks smaller than λ/10 were distinguishable since the metallic nanoparticles with high localized fields transferred evanescent waves to detectable signals in the far field. The far-field signals from random silver nanoparticles displayed similar behaviors as those from single nanoparticle and red-shifts of peak frequencies from particle-particle interaction.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. M. Ohtsu, K. Kobayashi, T. Kawazoe, S. Sangu, and T. Yatsui, �??Nanophotonics: design, fabrication, and operation of nanometric devices using optical near fields,�?? IEEE J. Sel. Top. Quantum Electron. 8, 839-862 (2002).
    [CrossRef]
  2. P. N. Prasad, �??Nanophotonics�?? (Wiley, Hoboken, NJ, 2004).
  3. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, �??Extraordinary optical transmission through sub-wavelength hole arrays,�?? Nature, 391, 667-669 (1998).
    [CrossRef]
  4. V. M. Shalaev, ed., �??Optical Properties of Nanostructured Random Media�?? (Springer-Verlag, Berlin, 2002).
  5. Antoly V Zayats and Igor O Smolyaninov, �??Near-field photonic: surface plasmon polaritons and locallized surface plasmons,�?? J. Opt. A: Pure Appl. Opt. 5, S16-S50 (2003).
    [CrossRef]
  6. C. Bohren and D. Huffman, �??Absorption and Scattering of Light by Small Particles�?? (Wiley, New York, 1983).
  7. D. A. Schultz,�??Plasmon resonant particles for biological detection,�?? Curr. Opin. Biotechnol. 14, 13-22 (2003).
    [CrossRef] [PubMed]
  8. S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, �??Plasmonics �?? A route to nanoscale optical devices,�?? Adv. Mater. 13, 1501-1505 (2001).
    [CrossRef]
  9. S. Hell and J.Wichmann, �??Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,�?? Opt. Lett. 19, 780-782 (1994).
    [CrossRef] [PubMed]
  10. T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, �??Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission,�?? Proc. Natl. Acad. Sci. 97, 8206-8210 (2000).
    [CrossRef] [PubMed]
  11. E. Betzig, J. Trautman and J. R. Wolfe, �??Near-field magneto-optics and high density data storage,�?? Appl. Phys. Lett. 61, 142-144 (1992).
    [CrossRef]
  12. B. D. Terris, H. J. Mamin, and D. Rugar, W. R. Studenmund, and G. S. Kino, �??Near-field optical data storage using a solid immersion lens,�?? Appl. Phys. Lett. 65, 388-390 (1994).
    [CrossRef]
  13. J. Tominaga, T. Nakano, and N. Atoda, �??An approach for recording and readout beyond the diffraction limit with an Sb thin film,�?? Appl. Phys. Lett. 73, 2078-2080 (1998).
    [CrossRef]
  14. H. Fuji, J. Tominaga, L. Men and T. Nakano, �??A near-field recording and readout technology using a metallic probe in an optical disk,�?? Jpn. J. Appl. Phys.39, 980-981 (2000).
    [CrossRef]
  15. T. Kikukawa, T. Nakano, T. Shima, and J. Tominaga, �??Rigid bubble pit formation and huge signal enhancement in super-resolution near-field structure disk with platinum-oxide layer,�?? Appl. Phys. Lett. 81, 4697-4699 (2002).
    [CrossRef]
  16. L. Shi, T. C. Chong, P. K. Tan, J. Li, X. Hu, X. Miao, and Q. Wang, �??Investigation on super-resolution near-field blu-ray-type phase-change optical disk with Sb2Te3 mask layer,�?? Jpn. J. Appl. Phys.44, 3615-3619 (2005).
    [CrossRef]
  17. T. Shima, T. Nakano, J. Kim, and J.Tominaga, �??Super-RENS disk for blue laser system retrieving signals from polycarbonate substrate side,�?? Jpn. J. Appl. Phys.44, 3631-3633 (2005).
    [CrossRef]
  18. W.-C. Liu, C.-Y. Wen, K.-H. Chen, W. C. Lin, and D. P. Tsai, �??Near-field images of the AgOx-type super-resolution near-field structure,�?? Appl. Phys. Lett. 78, 685-687 (2001).
    [CrossRef]
  19. T. Nakano, Y. Yamakawa, J. Tominaga, and N. Atoda, �??Near-field optical simulation of super-resolution near-field structure disks,�?? Jpn. J. Appl. Phys. 40, 1531-1535 (2001).
    [CrossRef]
  20. L. P. Shi, T. C. Chong, X. S. Miao, P. K. Tan, and J. M. Li, �??A new structure of super-resolution near-field phase-change optical disk with a Sb2Te3 mask layer,�?? Jpn. J. Appl. Phys. 40, 1649-1650 (2001).
    [CrossRef]
  21. L. P. Shi, T. C. Chong, H. B. Yao, P. K. Tan, and X. S. Miao, �??Super-resolution near-field optical disk with an additional localized surface plasmon coupling layer,�?? J, Appl. Phys. 91, 10209-10211 (2002).
    [CrossRef]
  22. W.-C. Liu and D. P. Tsai, �??Nonlinear near-field optical effects of the AgOx-type super-resolution near-field structure,�?? Jpn. J. Appl. Phys. 42, 1031-1032 (2003).
    [CrossRef]
  23. W.-C. Liu, M.-Y. Ng, and D. P. Tsai, �??Surface plasmon effects on the far-field signals of Agox-type super-resolution near-field structure,�?? Jpn. J. Appl. Phys. 43, 4713-4717 (2004).
    [CrossRef]
  24. W.-C. Liu, M.-Y. Ng, and D. P. Tsai, �??Enhanced resolution of AgOx-type super-RENS disks with periodic silver nanoclusters,�?? Scanning, 26, I98-I101 (2004).
    [PubMed]
  25. T. C. Chu, W.-C. Liu, and D. P. Tsai, �??Enhanced resolution induced by random silver nanoparticles in near-field optical disks,�?? Opt. Commun. 246, 561-567 (2005).
    [CrossRef]
  26. E.Wolf and M. Nieto-Vesperinas, �??Analyticity of the angular spectrum amplitude of scattered fields and some of its consequences,�?? J. Opt. Soc. Am. A, 2, 886-890 (1985).
    [CrossRef]
  27. M. Kuwahara, T. Nakano, J. Tominaga, M. B. Lee and N. Atoda, �??High-speed optical near-field photolithography by super resolution near-field structure,�?? Jpn. J. Appl. Phys. 38, L1079-L1081 (1999).
    [CrossRef]
  28. J. Tominaga, C. Mihalcea, D. Buechel, H. Fukuda, T. Nakano, N. Atoda, H. Fuji, and T. Kikukawa, �??Local plasmon photonic transistor,�?? Appl. Phys. Lett. 78, 2417-2419 (2001).
    [CrossRef]
  29. A. Taflove, �??Computational Electrodynamics�?? (Artech House. Boston-London, 1995).
  30. Edward D. Palik ed., �??Handbook of Optical Constants of Solids�?? (Academic, Orlando, Fla., 1985).
  31. J.B. Judkins, R. W. Ziolkowski, �??Finite-difference time-domain modeling of nonperfectly conducting metallic thin-film gratings,�?? J. Opt. Soc. Am. A 12, 1974-1983 (1995).
    [CrossRef]
  32. K.-P. Charle, L. Konig, S. Nepijko, I. Rabin, and W. Schulze, �??The surface plasmon resonance in free and embedded Ag-cluster in the size range 1.5 nm < D < 30 nm,�?? Cryst. Res. Technol. 33, 1085-1096 (1998).
    [CrossRef]
  33. S. D. Gedney, �??The perfectly matched layer absorbing medium,�?? in �??Advances in Computational Electrodynamics�??, A. Taflove ed. (Artech House, Boston, MA, 1998).
  34. J. Tominaga, T. Shima, M. Kuwahara, T. Fukaya, A. Kolobov, and T. Nakano, �??Ferroelectric catastrophe: beyond nanometre-scale optical resolution,�?? Nanotechnology 15, 411-415 (2004).
    [CrossRef]
  35. A. V. Kolobov, P. Fons, A. I. Frenkel, A. L. Ankudinov, J. Tominaga, and T. Uruga, �??Understanding the phase-change mechanism of rewritable optical media,�?? Nat. Mater. 3, 703-708 (2004).
    [CrossRef] [PubMed]

Adv. Mater. (1)

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, �??Plasmonics �?? A route to nanoscale optical devices,�?? Adv. Mater. 13, 1501-1505 (2001).
[CrossRef]

Advances in Computational Electrodynamic (1)

S. D. Gedney, �??The perfectly matched layer absorbing medium,�?? in �??Advances in Computational Electrodynamics�??, A. Taflove ed. (Artech House, Boston, MA, 1998).

Appl. Phys. Lett. (6)

J. Tominaga, C. Mihalcea, D. Buechel, H. Fukuda, T. Nakano, N. Atoda, H. Fuji, and T. Kikukawa, �??Local plasmon photonic transistor,�?? Appl. Phys. Lett. 78, 2417-2419 (2001).
[CrossRef]

E. Betzig, J. Trautman and J. R. Wolfe, �??Near-field magneto-optics and high density data storage,�?? Appl. Phys. Lett. 61, 142-144 (1992).
[CrossRef]

B. D. Terris, H. J. Mamin, and D. Rugar, W. R. Studenmund, and G. S. Kino, �??Near-field optical data storage using a solid immersion lens,�?? Appl. Phys. Lett. 65, 388-390 (1994).
[CrossRef]

J. Tominaga, T. Nakano, and N. Atoda, �??An approach for recording and readout beyond the diffraction limit with an Sb thin film,�?? Appl. Phys. Lett. 73, 2078-2080 (1998).
[CrossRef]

T. Kikukawa, T. Nakano, T. Shima, and J. Tominaga, �??Rigid bubble pit formation and huge signal enhancement in super-resolution near-field structure disk with platinum-oxide layer,�?? Appl. Phys. Lett. 81, 4697-4699 (2002).
[CrossRef]

W.-C. Liu, C.-Y. Wen, K.-H. Chen, W. C. Lin, and D. P. Tsai, �??Near-field images of the AgOx-type super-resolution near-field structure,�?? Appl. Phys. Lett. 78, 685-687 (2001).
[CrossRef]

Cryst. Res. Technol. (1)

K.-P. Charle, L. Konig, S. Nepijko, I. Rabin, and W. Schulze, �??The surface plasmon resonance in free and embedded Ag-cluster in the size range 1.5 nm < D < 30 nm,�?? Cryst. Res. Technol. 33, 1085-1096 (1998).
[CrossRef]

Curr. Opin. Biotechnol. (1)

D. A. Schultz,�??Plasmon resonant particles for biological detection,�?? Curr. Opin. Biotechnol. 14, 13-22 (2003).
[CrossRef] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (1)

M. Ohtsu, K. Kobayashi, T. Kawazoe, S. Sangu, and T. Yatsui, �??Nanophotonics: design, fabrication, and operation of nanometric devices using optical near fields,�?? IEEE J. Sel. Top. Quantum Electron. 8, 839-862 (2002).
[CrossRef]

J, Appl. Phys. (1)

L. P. Shi, T. C. Chong, H. B. Yao, P. K. Tan, and X. S. Miao, �??Super-resolution near-field optical disk with an additional localized surface plasmon coupling layer,�?? J, Appl. Phys. 91, 10209-10211 (2002).
[CrossRef]

J. Opt. A: Pure Appl. Opt. (1)

Antoly V Zayats and Igor O Smolyaninov, �??Near-field photonic: surface plasmon polaritons and locallized surface plasmons,�?? J. Opt. A: Pure Appl. Opt. 5, S16-S50 (2003).
[CrossRef]

J. Opt. Soc. Am. A (2)

Jpn. J. Appl. Phys. (8)

M. Kuwahara, T. Nakano, J. Tominaga, M. B. Lee and N. Atoda, �??High-speed optical near-field photolithography by super resolution near-field structure,�?? Jpn. J. Appl. Phys. 38, L1079-L1081 (1999).
[CrossRef]

W.-C. Liu and D. P. Tsai, �??Nonlinear near-field optical effects of the AgOx-type super-resolution near-field structure,�?? Jpn. J. Appl. Phys. 42, 1031-1032 (2003).
[CrossRef]

W.-C. Liu, M.-Y. Ng, and D. P. Tsai, �??Surface plasmon effects on the far-field signals of Agox-type super-resolution near-field structure,�?? Jpn. J. Appl. Phys. 43, 4713-4717 (2004).
[CrossRef]

T. Nakano, Y. Yamakawa, J. Tominaga, and N. Atoda, �??Near-field optical simulation of super-resolution near-field structure disks,�?? Jpn. J. Appl. Phys. 40, 1531-1535 (2001).
[CrossRef]

L. P. Shi, T. C. Chong, X. S. Miao, P. K. Tan, and J. M. Li, �??A new structure of super-resolution near-field phase-change optical disk with a Sb2Te3 mask layer,�?? Jpn. J. Appl. Phys. 40, 1649-1650 (2001).
[CrossRef]

L. Shi, T. C. Chong, P. K. Tan, J. Li, X. Hu, X. Miao, and Q. Wang, �??Investigation on super-resolution near-field blu-ray-type phase-change optical disk with Sb2Te3 mask layer,�?? Jpn. J. Appl. Phys.44, 3615-3619 (2005).
[CrossRef]

T. Shima, T. Nakano, J. Kim, and J.Tominaga, �??Super-RENS disk for blue laser system retrieving signals from polycarbonate substrate side,�?? Jpn. J. Appl. Phys.44, 3631-3633 (2005).
[CrossRef]

H. Fuji, J. Tominaga, L. Men and T. Nakano, �??A near-field recording and readout technology using a metallic probe in an optical disk,�?? Jpn. J. Appl. Phys.39, 980-981 (2000).
[CrossRef]

Nanotechnology (1)

J. Tominaga, T. Shima, M. Kuwahara, T. Fukaya, A. Kolobov, and T. Nakano, �??Ferroelectric catastrophe: beyond nanometre-scale optical resolution,�?? Nanotechnology 15, 411-415 (2004).
[CrossRef]

Nat. Mater. (1)

A. V. Kolobov, P. Fons, A. I. Frenkel, A. L. Ankudinov, J. Tominaga, and T. Uruga, �??Understanding the phase-change mechanism of rewritable optical media,�?? Nat. Mater. 3, 703-708 (2004).
[CrossRef] [PubMed]

Nature (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, �??Extraordinary optical transmission through sub-wavelength hole arrays,�?? Nature, 391, 667-669 (1998).
[CrossRef]

Opt. Commun. (1)

T. C. Chu, W.-C. Liu, and D. P. Tsai, �??Enhanced resolution induced by random silver nanoparticles in near-field optical disks,�?? Opt. Commun. 246, 561-567 (2005).
[CrossRef]

Opt. Lett. (1)

Proc. Natl. Acad. Sci. (1)

T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, �??Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission,�?? Proc. Natl. Acad. Sci. 97, 8206-8210 (2000).
[CrossRef] [PubMed]

Scanning (1)

W.-C. Liu, M.-Y. Ng, and D. P. Tsai, �??Enhanced resolution of AgOx-type super-RENS disks with periodic silver nanoclusters,�?? Scanning, 26, I98-I101 (2004).
[PubMed]

Other (5)

A. Taflove, �??Computational Electrodynamics�?? (Artech House. Boston-London, 1995).

Edward D. Palik ed., �??Handbook of Optical Constants of Solids�?? (Academic, Orlando, Fla., 1985).

C. Bohren and D. Huffman, �??Absorption and Scattering of Light by Small Particles�?? (Wiley, New York, 1983).

V. M. Shalaev, ed., �??Optical Properties of Nanostructured Random Media�?? (Springer-Verlag, Berlin, 2002).

P. N. Prasad, �??Nanophotonics�?? (Wiley, Hoboken, NJ, 2004).

Supplementary Material (1)

» Media 1: GIF (980 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Scheme of the AgO x -type super-RENS disk with random silver nanoparticles.

Fig. 2.
Fig. 2.

Movie of the TM-mode near-field distributions of the AgO x -type super-RENS disk with random silver nanoparticles. The wavelength of incident light is from 400 nm to 827 nm. Front picture presents the case of 650 nm wavelength. The Gaussian beam focused at the recording mark and the size of recording mark was 100 nm. The local fields were enhanced around silver nanoparticles. [Media 1]

Fig. 3.
Fig. 3.

Far-field difference signals of the AgO x -type super-RENS disk with and without silver nanoparticles. The wavelength of incident light was (a) 400 nm, (b) 540 nm, (c) 650 nm, (d) 775 nm.

Fig. 4.
Fig. 4.

Far-field difference signals of the AgO x -type super-RENS disk with silver nanoparticles as a function of wavelength of incident light. The size of recording marks was larger than diffraction limit of visible light in (a) and smaller than diffraction limit in (b).

Fig. 5.
Fig. 5.

Scattering efficiency of single silver nanoparticle. The scattering efficiency at different wavelengths exhibited double peaks since the geometric shape of single silver nanoparticle was not perfectly circular in the FDTD numerical simulation.

Metrics