Abstract

We demonstrate an all-optical tunable delay in fiber based on wavelength conversion, group-velocity dispersion, and wavelength reconversion. The device operates near 1550 nm and generates delays greater than 800 ps. Our delay technique has the combined advantages of continuous control of a wide range of delays from picoseconds to nanoseconds, for a wide range of signal pulse durations (ps to 10 ns), and an output signal wavelength and bandwidth that are the same as that of the input. The scheme can potentially produce fractional delays of 1000 and is applicable to both amplitude- and phase-shift keyed data.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. E. S. Choi, J. Na, S. Y. Ryu, G. Mudhana, and B. H. Lee, �??All-fiber variable optical delay line for applications in optical coherence tomography: feasibility study for a novel delay line,�?? Opt. Express 13, 1334�??1345 (2005), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-4-1334">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-4-1334</a>.
    [CrossRef] [PubMed]
  2. J. L. Corral, J. Marti, J. M. Fuster, and R. I. Laming, �??True time-delay scheme for feeding optically controlled phased-array antennas using chirped-fiber gratings,�?? IEEE Photonics Technol. Lett. 9, 1529�??1531 (1997).
    [CrossRef]
  3. R. Ramaswami, K. N. Sivarajan, �??Optical networks: a practical perspective,�?? (Morgan Kaufmann, San Francisco, CA, 2002) 2nd Ed., Chap. 12.
  4. G. Lenz, B. J. Eggleton, C. K. Madsen, and R. E. Slusher, �??Optical delay lines based on optical filters,�?? IEEE J. Quantum Electron. 37, 525�??532 (2001).
    [CrossRef]
  5. T. Sakamoto, K. Noguchi, R. Sato, A. Okada, Y. Sakai, and M. Matsuoka, �??Variable optical delay circuit using wavelength converters,�?? Electron. Lett. 37, 454�??455 (2001).
    [CrossRef]
  6. J. van Howe, C. Xu, �??Ultrafast optical delay line using soliton propagation between a time-prism pair,�?? Opt. Express 13, 1138�??1143 (2005), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-4-1138">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-4-1138</a>.
    [CrossRef] [PubMed]
  7. L. Zucchelli, M. Burzio, and P. Gambini, �??New solutions for optical packet delineation and synchronization in optical packet switched networks,�?? in Proc. ECOC �??96, Oslo, Norway, 3, 301�??304 (1996).
  8. K. Shimizu, G Kalogerakis, K.Wong, M. Marhic, and L. Kazovsky, �??Timing jitter and amplitude noise reduction by a chirped pulsed-pump fiber OPA,�?? in Proc. OFC �??03, Anaheim, USA, 1, 197�??198 (2003).
  9. K. K. Y. Wong, K. Shimizu, K. Uesaka, G. Kalogerakis, M. E. Marhic, and L. G. Kazovsky, �??Continuous-wave fiber optical parametric amplifier with 60-dB gain using a novel two-segment design,�?? IEEE Photonics Technol. Lett. 15, 1707�??1709 (2003).
    [CrossRef]
  10. Y. K. Su, L. J.Wang, A. Agarwal, and P. Kumar, �??Wavelength-tunable all-optical clock recovery using a fiberoptic parametric oscillator,�?? Opt. Comm. 184, 151�??156 (2000).
    [CrossRef]
  11. R.W. McKerracher, J. L. Blows, C. M. de Sterke, �??Wavelength conversion bandwidth in fiber based optical parametric amplifiers,�?? Opt. Express 11, 1002�??1007 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-9-1002">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-9-1002</a>.
    [CrossRef] [PubMed]
  12. J. L. Blows, and P. F. Hu, �??Cross-talk-induced limitations of two-pump optical fiber parametric amplifiers,�?? J. Opt. Soc. Am. B 21, 989�??995 (2004).
    [CrossRef]
  13. R. Tang, P. L. Voss, J. Lasri, P. Devgan, and P. Kumar, �??Noise-figure limit of fiber-optical parametric amplifiers and wavelength converters: experimental investigation,�?? Opt. Lett. 29, 2372�??2374 (2004).
    [CrossRef] [PubMed]
  14. A. Durécu-Legrand, C. Simonneau, D. Bayart, A. Mussot, T. Sylvestre, E. Lantz, and H. Maillotte, �??Impact of pump OSNR on noise figure for fiber-optical parametric amplifiers,�?? IEEE Photonics Technol. Lett. 17, 1178�??1180 (2005).
    [CrossRef]
  15. M. C. Ho, M. E. Marhic, K. K. Y. Wong, and L. G. Kazovsky, �??Narrow-linewidth idler generation in fiber four-wave mixing and parametric amplification by dithering two pumps in opposition of phase,�?? J. of Lightwave Technol. 20, 469�??476 (2002).
    [CrossRef]
  16. S. Radic, C. J. McKinstrie, R. M. Jopson, J. C. Centanni, A. R. Chraplyvy, C. G. Jorgensen, K. Brar, and C. Headley, �??Selective suppression of idler spectral broadening in two-pump parametric architectures,�?? IEEE Photonics Technol. Lett. 15, 673-675 (2003).
    [CrossRef]
  17. K. K. Y.Wong, M. E. Marhic, K. Uesaka, and L. G. Kazovsky, �??Polarization-independent one-pump fiber-optical parametric amplifier,�?? IEEE Photonics Technol. Lett. 14, 1506�??1508 (2002).
    [CrossRef]
  18. K. K. Chow, C. Shu, C. L. Lin, and A. Bjarklev, �??Polarization-insensitive widely tunable wavelength converter based on, four-wave mixing in a dispersion-flattened nonlinear photonic crystal fiber,�?? IEEE Photonics Technol. Lett. 17, 624�??626 (2005).
    [CrossRef]
  19. C. Yu, Z. Pan, Y. Wang, Y. W. Song, D. Gurkan, M. C. Hauer, D. Starodubov, A. E. Willner, �??Polarization-insensitive all-optical wavelength conversion using dispersion-shifted fiber with a fiber Bragg grating and a Faraday rotator mirror,�?? IEEE Photonics Technol. Lett. 16, 1906�??1908 (2004).
    [CrossRef]
  20. J. Hansryd and P. A. Andrekson, �??O-TDM demultiplexer with 40-dB gain based on a fiber optical parametric amplifier,�?? IEEE Photonics Technol. Lett. 13, 732�??734 (2001).
    [CrossRef]

Electron. Lett.

T. Sakamoto, K. Noguchi, R. Sato, A. Okada, Y. Sakai, and M. Matsuoka, �??Variable optical delay circuit using wavelength converters,�?? Electron. Lett. 37, 454�??455 (2001).
[CrossRef]

IEEE J. Quantum Electron.

G. Lenz, B. J. Eggleton, C. K. Madsen, and R. E. Slusher, �??Optical delay lines based on optical filters,�?? IEEE J. Quantum Electron. 37, 525�??532 (2001).
[CrossRef]

IEEE Photonics Technol. Lett.

J. L. Corral, J. Marti, J. M. Fuster, and R. I. Laming, �??True time-delay scheme for feeding optically controlled phased-array antennas using chirped-fiber gratings,�?? IEEE Photonics Technol. Lett. 9, 1529�??1531 (1997).
[CrossRef]

K. K. Y. Wong, K. Shimizu, K. Uesaka, G. Kalogerakis, M. E. Marhic, and L. G. Kazovsky, �??Continuous-wave fiber optical parametric amplifier with 60-dB gain using a novel two-segment design,�?? IEEE Photonics Technol. Lett. 15, 1707�??1709 (2003).
[CrossRef]

A. Durécu-Legrand, C. Simonneau, D. Bayart, A. Mussot, T. Sylvestre, E. Lantz, and H. Maillotte, �??Impact of pump OSNR on noise figure for fiber-optical parametric amplifiers,�?? IEEE Photonics Technol. Lett. 17, 1178�??1180 (2005).
[CrossRef]

S. Radic, C. J. McKinstrie, R. M. Jopson, J. C. Centanni, A. R. Chraplyvy, C. G. Jorgensen, K. Brar, and C. Headley, �??Selective suppression of idler spectral broadening in two-pump parametric architectures,�?? IEEE Photonics Technol. Lett. 15, 673-675 (2003).
[CrossRef]

K. K. Y.Wong, M. E. Marhic, K. Uesaka, and L. G. Kazovsky, �??Polarization-independent one-pump fiber-optical parametric amplifier,�?? IEEE Photonics Technol. Lett. 14, 1506�??1508 (2002).
[CrossRef]

K. K. Chow, C. Shu, C. L. Lin, and A. Bjarklev, �??Polarization-insensitive widely tunable wavelength converter based on, four-wave mixing in a dispersion-flattened nonlinear photonic crystal fiber,�?? IEEE Photonics Technol. Lett. 17, 624�??626 (2005).
[CrossRef]

C. Yu, Z. Pan, Y. Wang, Y. W. Song, D. Gurkan, M. C. Hauer, D. Starodubov, A. E. Willner, �??Polarization-insensitive all-optical wavelength conversion using dispersion-shifted fiber with a fiber Bragg grating and a Faraday rotator mirror,�?? IEEE Photonics Technol. Lett. 16, 1906�??1908 (2004).
[CrossRef]

J. Hansryd and P. A. Andrekson, �??O-TDM demultiplexer with 40-dB gain based on a fiber optical parametric amplifier,�?? IEEE Photonics Technol. Lett. 13, 732�??734 (2001).
[CrossRef]

J. of Lightwave Technol.

M. C. Ho, M. E. Marhic, K. K. Y. Wong, and L. G. Kazovsky, �??Narrow-linewidth idler generation in fiber four-wave mixing and parametric amplification by dithering two pumps in opposition of phase,�?? J. of Lightwave Technol. 20, 469�??476 (2002).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Comm.

Y. K. Su, L. J.Wang, A. Agarwal, and P. Kumar, �??Wavelength-tunable all-optical clock recovery using a fiberoptic parametric oscillator,�?? Opt. Comm. 184, 151�??156 (2000).
[CrossRef]

Opt. Express

Opt. Lett.

Proc. ECOC ???96, Oslo, Norway, 1996

L. Zucchelli, M. Burzio, and P. Gambini, �??New solutions for optical packet delineation and synchronization in optical packet switched networks,�?? in Proc. ECOC �??96, Oslo, Norway, 3, 301�??304 (1996).

Proc. OFC ???03, Anaheim, 2003

K. Shimizu, G Kalogerakis, K.Wong, M. Marhic, and L. Kazovsky, �??Timing jitter and amplitude noise reduction by a chirped pulsed-pump fiber OPA,�?? in Proc. OFC �??03, Anaheim, USA, 1, 197�??198 (2003).

Other

R. Ramaswami, K. N. Sivarajan, �??Optical networks: a practical perspective,�?? (Morgan Kaufmann, San Francisco, CA, 2002) 2nd Ed., Chap. 12.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic of the continuously tunable optical delay generator. FPC, fiber polarization controller; det, detector.

Fig. 2.
Fig. 2.

Experimental results for the all-optical delay. (a) Plotted on the left axis are the measured (points) along with a linear fit (line). Plotted on the right axis is the expected parametric gain as a function of pump wavelength. (b) Corresponding measured temporal traces, as recorded with a 10-GHz detector, of signal pulses for the data points shown in (a).

Fig. 3.
Fig. 3.

Measured optical spectra for the signal pulses at the input (solid line) and output (dot-dash line) of the delay generator.

Fig. 4.
Fig. 4.

Plots of bit-error rate (BER) as a function of received power for the simulated system. Results indicate that a system operating at 10 Gb/s will experience a power penalty of 3 dB. Shown also are simulated eye diagrams for the back-to-back signal as well as the converted signal for two different pump wavelength settings.

Metrics