Abstract

We demonstrate that metallic electrodes symmetrically placed about a single mode dielectric waveguide can effectively polarize the mode by excitation of surface plasmons. The transmission through the metal electrode waveguide structure is examined as a function of mode polarization and electrode spacing. It is found that modes polarized perpendicular to the metal surface can resonantly excite surface plasmons, extinguishing the mode in the waveguide core, while modes polarized parallel to metal surface only suffer mode attenuation due to the presence of the metal. The phase matching conditions for excitation of surface plasmons are examined and the polarization and insertion loss of the transmitted mode is experimentally verified.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K.C. Cadien, M. Reshotoko, B. Block, A. Bowen, D. Kencke, and P.S. Davids, “Challenges for on-chip optical interconnects,” in Proc. SPIE 5730, 133 (2005).
    [CrossRef]
  2. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, (John Wiley & Sons, 1991)
    [CrossRef]
  3. G. I. Stegeman and J. J Burke, “Long-range surface plasmons in electrode structures,” Appl. Phys. Lett. 4221, (1983).
    [CrossRef]
  4. P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of symmetric structures,” Phys. Rev. B 61, 10848, (2000).
    [CrossRef]
  5. B. Lamprecht, J.R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, F.R. Aussenegg, and J. C. Weeber, “Surface plasmon propagation in microscale metal stripes,” Appl. Phys. Lett. 79, 51 (2001).
    [CrossRef]
  6. T. Nikolajsen, K. Leosson, I. Salakhutdinov, and S. I. Bozhevolnyi, “Polymer-based surface-plasmon-polaritio stripe waveguides at telecommunication wavelengths,”Appl. Phys. Lett. 82, 668 (2003).
    [CrossRef]
  7. M. Hochberg, T. Baehr-Jones, C. Walker, and A. Scherer, “Integrated plasmon and dielectric waveguides, Opt. Express. 12, 5481 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-22-5481.
    [CrossRef] [PubMed]
  8. K. H. Rollke and W. Sohler, “Metal-clad waveguide as cutoff polarizer for integrated optics,” IEEE J. Quantum Electron. QE–13, 141 (1977).
    [CrossRef]
  9. W. Johnstone, G. Stewart, T. Hart, and B. Culshaw “Surface plasmon polaritons in thin metal films and their role in fiber optic polarizing devices,” J. Lightwave Technol. 8, 538 (1990).
    [CrossRef]
  10. A. Taflove, Computational Electromagnetics, (Artech, Boston, 1995).
  11. R.H. Ritchie, E.T. Arakawa, J.J. Cowan, and R.N. Hamm, “Surface-plasmon resonance in grating diffraction,” Phys. Rev. Lett. 21,1530 (1968).
    [CrossRef]
  12. J.J. Burke, G. I. Stegeman, and T. Tamir, “Surface -polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B. 33, 5186 (1986).
    [CrossRef]

2005 (1)

K.C. Cadien, M. Reshotoko, B. Block, A. Bowen, D. Kencke, and P.S. Davids, “Challenges for on-chip optical interconnects,” in Proc. SPIE 5730, 133 (2005).
[CrossRef]

2004 (1)

M. Hochberg, T. Baehr-Jones, C. Walker, and A. Scherer, “Integrated plasmon and dielectric waveguides, Opt. Express. 12, 5481 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-22-5481.
[CrossRef] [PubMed]

2003 (1)

T. Nikolajsen, K. Leosson, I. Salakhutdinov, and S. I. Bozhevolnyi, “Polymer-based surface-plasmon-polaritio stripe waveguides at telecommunication wavelengths,”Appl. Phys. Lett. 82, 668 (2003).
[CrossRef]

2001 (1)

B. Lamprecht, J.R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, F.R. Aussenegg, and J. C. Weeber, “Surface plasmon propagation in microscale metal stripes,” Appl. Phys. Lett. 79, 51 (2001).
[CrossRef]

2000 (1)

P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of symmetric structures,” Phys. Rev. B 61, 10848, (2000).
[CrossRef]

1990 (1)

W. Johnstone, G. Stewart, T. Hart, and B. Culshaw “Surface plasmon polaritons in thin metal films and their role in fiber optic polarizing devices,” J. Lightwave Technol. 8, 538 (1990).
[CrossRef]

1986 (1)

J.J. Burke, G. I. Stegeman, and T. Tamir, “Surface -polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B. 33, 5186 (1986).
[CrossRef]

1983 (1)

G. I. Stegeman and J. J Burke, “Long-range surface plasmons in electrode structures,” Appl. Phys. Lett. 4221, (1983).
[CrossRef]

1977 (1)

K. H. Rollke and W. Sohler, “Metal-clad waveguide as cutoff polarizer for integrated optics,” IEEE J. Quantum Electron. QE–13, 141 (1977).
[CrossRef]

1968 (1)

R.H. Ritchie, E.T. Arakawa, J.J. Cowan, and R.N. Hamm, “Surface-plasmon resonance in grating diffraction,” Phys. Rev. Lett. 21,1530 (1968).
[CrossRef]

Arakawa, E.T.

R.H. Ritchie, E.T. Arakawa, J.J. Cowan, and R.N. Hamm, “Surface-plasmon resonance in grating diffraction,” Phys. Rev. Lett. 21,1530 (1968).
[CrossRef]

Aussenegg, F.R.

B. Lamprecht, J.R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, F.R. Aussenegg, and J. C. Weeber, “Surface plasmon propagation in microscale metal stripes,” Appl. Phys. Lett. 79, 51 (2001).
[CrossRef]

Baehr-Jones, T.

M. Hochberg, T. Baehr-Jones, C. Walker, and A. Scherer, “Integrated plasmon and dielectric waveguides, Opt. Express. 12, 5481 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-22-5481.
[CrossRef] [PubMed]

Berini, P.

P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of symmetric structures,” Phys. Rev. B 61, 10848, (2000).
[CrossRef]

Block, B.

K.C. Cadien, M. Reshotoko, B. Block, A. Bowen, D. Kencke, and P.S. Davids, “Challenges for on-chip optical interconnects,” in Proc. SPIE 5730, 133 (2005).
[CrossRef]

Bowen, A.

K.C. Cadien, M. Reshotoko, B. Block, A. Bowen, D. Kencke, and P.S. Davids, “Challenges for on-chip optical interconnects,” in Proc. SPIE 5730, 133 (2005).
[CrossRef]

Bozhevolnyi, S. I.

T. Nikolajsen, K. Leosson, I. Salakhutdinov, and S. I. Bozhevolnyi, “Polymer-based surface-plasmon-polaritio stripe waveguides at telecommunication wavelengths,”Appl. Phys. Lett. 82, 668 (2003).
[CrossRef]

Burke, J. J

G. I. Stegeman and J. J Burke, “Long-range surface plasmons in electrode structures,” Appl. Phys. Lett. 4221, (1983).
[CrossRef]

Burke, J.J.

J.J. Burke, G. I. Stegeman, and T. Tamir, “Surface -polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B. 33, 5186 (1986).
[CrossRef]

Cadien, K.C.

K.C. Cadien, M. Reshotoko, B. Block, A. Bowen, D. Kencke, and P.S. Davids, “Challenges for on-chip optical interconnects,” in Proc. SPIE 5730, 133 (2005).
[CrossRef]

Cowan, J.J.

R.H. Ritchie, E.T. Arakawa, J.J. Cowan, and R.N. Hamm, “Surface-plasmon resonance in grating diffraction,” Phys. Rev. Lett. 21,1530 (1968).
[CrossRef]

Culshaw, B.

W. Johnstone, G. Stewart, T. Hart, and B. Culshaw “Surface plasmon polaritons in thin metal films and their role in fiber optic polarizing devices,” J. Lightwave Technol. 8, 538 (1990).
[CrossRef]

Davids, P.S.

K.C. Cadien, M. Reshotoko, B. Block, A. Bowen, D. Kencke, and P.S. Davids, “Challenges for on-chip optical interconnects,” in Proc. SPIE 5730, 133 (2005).
[CrossRef]

Ditlbacher, H.

B. Lamprecht, J.R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, F.R. Aussenegg, and J. C. Weeber, “Surface plasmon propagation in microscale metal stripes,” Appl. Phys. Lett. 79, 51 (2001).
[CrossRef]

Felidj, N.

B. Lamprecht, J.R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, F.R. Aussenegg, and J. C. Weeber, “Surface plasmon propagation in microscale metal stripes,” Appl. Phys. Lett. 79, 51 (2001).
[CrossRef]

Hamm, R.N.

R.H. Ritchie, E.T. Arakawa, J.J. Cowan, and R.N. Hamm, “Surface-plasmon resonance in grating diffraction,” Phys. Rev. Lett. 21,1530 (1968).
[CrossRef]

Hart, T.

W. Johnstone, G. Stewart, T. Hart, and B. Culshaw “Surface plasmon polaritons in thin metal films and their role in fiber optic polarizing devices,” J. Lightwave Technol. 8, 538 (1990).
[CrossRef]

Hochberg, M.

M. Hochberg, T. Baehr-Jones, C. Walker, and A. Scherer, “Integrated plasmon and dielectric waveguides, Opt. Express. 12, 5481 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-22-5481.
[CrossRef] [PubMed]

Johnstone, W.

W. Johnstone, G. Stewart, T. Hart, and B. Culshaw “Surface plasmon polaritons in thin metal films and their role in fiber optic polarizing devices,” J. Lightwave Technol. 8, 538 (1990).
[CrossRef]

Kencke, D.

K.C. Cadien, M. Reshotoko, B. Block, A. Bowen, D. Kencke, and P.S. Davids, “Challenges for on-chip optical interconnects,” in Proc. SPIE 5730, 133 (2005).
[CrossRef]

Krenn, J.R.

B. Lamprecht, J.R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, F.R. Aussenegg, and J. C. Weeber, “Surface plasmon propagation in microscale metal stripes,” Appl. Phys. Lett. 79, 51 (2001).
[CrossRef]

Lamprecht, B.

B. Lamprecht, J.R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, F.R. Aussenegg, and J. C. Weeber, “Surface plasmon propagation in microscale metal stripes,” Appl. Phys. Lett. 79, 51 (2001).
[CrossRef]

Leitner, A.

B. Lamprecht, J.R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, F.R. Aussenegg, and J. C. Weeber, “Surface plasmon propagation in microscale metal stripes,” Appl. Phys. Lett. 79, 51 (2001).
[CrossRef]

Leosson, K.

T. Nikolajsen, K. Leosson, I. Salakhutdinov, and S. I. Bozhevolnyi, “Polymer-based surface-plasmon-polaritio stripe waveguides at telecommunication wavelengths,”Appl. Phys. Lett. 82, 668 (2003).
[CrossRef]

Nikolajsen, T.

T. Nikolajsen, K. Leosson, I. Salakhutdinov, and S. I. Bozhevolnyi, “Polymer-based surface-plasmon-polaritio stripe waveguides at telecommunication wavelengths,”Appl. Phys. Lett. 82, 668 (2003).
[CrossRef]

Reshotoko, M.

K.C. Cadien, M. Reshotoko, B. Block, A. Bowen, D. Kencke, and P.S. Davids, “Challenges for on-chip optical interconnects,” in Proc. SPIE 5730, 133 (2005).
[CrossRef]

Ritchie, R.H.

R.H. Ritchie, E.T. Arakawa, J.J. Cowan, and R.N. Hamm, “Surface-plasmon resonance in grating diffraction,” Phys. Rev. Lett. 21,1530 (1968).
[CrossRef]

Rollke, K. H.

K. H. Rollke and W. Sohler, “Metal-clad waveguide as cutoff polarizer for integrated optics,” IEEE J. Quantum Electron. QE–13, 141 (1977).
[CrossRef]

Salakhutdinov, I.

T. Nikolajsen, K. Leosson, I. Salakhutdinov, and S. I. Bozhevolnyi, “Polymer-based surface-plasmon-polaritio stripe waveguides at telecommunication wavelengths,”Appl. Phys. Lett. 82, 668 (2003).
[CrossRef]

Saleh, B. E. A.

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, (John Wiley & Sons, 1991)
[CrossRef]

Salerno, M.

B. Lamprecht, J.R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, F.R. Aussenegg, and J. C. Weeber, “Surface plasmon propagation in microscale metal stripes,” Appl. Phys. Lett. 79, 51 (2001).
[CrossRef]

Scherer, A.

M. Hochberg, T. Baehr-Jones, C. Walker, and A. Scherer, “Integrated plasmon and dielectric waveguides, Opt. Express. 12, 5481 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-22-5481.
[CrossRef] [PubMed]

Schider, G.

B. Lamprecht, J.R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, F.R. Aussenegg, and J. C. Weeber, “Surface plasmon propagation in microscale metal stripes,” Appl. Phys. Lett. 79, 51 (2001).
[CrossRef]

Sohler, W.

K. H. Rollke and W. Sohler, “Metal-clad waveguide as cutoff polarizer for integrated optics,” IEEE J. Quantum Electron. QE–13, 141 (1977).
[CrossRef]

Stegeman, G. I.

J.J. Burke, G. I. Stegeman, and T. Tamir, “Surface -polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B. 33, 5186 (1986).
[CrossRef]

G. I. Stegeman and J. J Burke, “Long-range surface plasmons in electrode structures,” Appl. Phys. Lett. 4221, (1983).
[CrossRef]

Stewart, G.

W. Johnstone, G. Stewart, T. Hart, and B. Culshaw “Surface plasmon polaritons in thin metal films and their role in fiber optic polarizing devices,” J. Lightwave Technol. 8, 538 (1990).
[CrossRef]

Taflove, A.

A. Taflove, Computational Electromagnetics, (Artech, Boston, 1995).

Tamir, T.

J.J. Burke, G. I. Stegeman, and T. Tamir, “Surface -polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B. 33, 5186 (1986).
[CrossRef]

Teich, M. C.

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, (John Wiley & Sons, 1991)
[CrossRef]

Walker, C.

M. Hochberg, T. Baehr-Jones, C. Walker, and A. Scherer, “Integrated plasmon and dielectric waveguides, Opt. Express. 12, 5481 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-22-5481.
[CrossRef] [PubMed]

Weeber, J. C.

B. Lamprecht, J.R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, F.R. Aussenegg, and J. C. Weeber, “Surface plasmon propagation in microscale metal stripes,” Appl. Phys. Lett. 79, 51 (2001).
[CrossRef]

Appl. Phys. Lett. (3)

G. I. Stegeman and J. J Burke, “Long-range surface plasmons in electrode structures,” Appl. Phys. Lett. 4221, (1983).
[CrossRef]

B. Lamprecht, J.R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, F.R. Aussenegg, and J. C. Weeber, “Surface plasmon propagation in microscale metal stripes,” Appl. Phys. Lett. 79, 51 (2001).
[CrossRef]

T. Nikolajsen, K. Leosson, I. Salakhutdinov, and S. I. Bozhevolnyi, “Polymer-based surface-plasmon-polaritio stripe waveguides at telecommunication wavelengths,”Appl. Phys. Lett. 82, 668 (2003).
[CrossRef]

IEEE J. Quantum Electron. (1)

K. H. Rollke and W. Sohler, “Metal-clad waveguide as cutoff polarizer for integrated optics,” IEEE J. Quantum Electron. QE–13, 141 (1977).
[CrossRef]

J. Lightwave Technol. (1)

W. Johnstone, G. Stewart, T. Hart, and B. Culshaw “Surface plasmon polaritons in thin metal films and their role in fiber optic polarizing devices,” J. Lightwave Technol. 8, 538 (1990).
[CrossRef]

Opt. Express. (1)

M. Hochberg, T. Baehr-Jones, C. Walker, and A. Scherer, “Integrated plasmon and dielectric waveguides, Opt. Express. 12, 5481 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-22-5481.
[CrossRef] [PubMed]

Phys. Rev. B (1)

P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of symmetric structures,” Phys. Rev. B 61, 10848, (2000).
[CrossRef]

Phys. Rev. B. (1)

J.J. Burke, G. I. Stegeman, and T. Tamir, “Surface -polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B. 33, 5186 (1986).
[CrossRef]

Phys. Rev. Lett. (1)

R.H. Ritchie, E.T. Arakawa, J.J. Cowan, and R.N. Hamm, “Surface-plasmon resonance in grating diffraction,” Phys. Rev. Lett. 21,1530 (1968).
[CrossRef]

Proc. SPIE (1)

K.C. Cadien, M. Reshotoko, B. Block, A. Bowen, D. Kencke, and P.S. Davids, “Challenges for on-chip optical interconnects,” in Proc. SPIE 5730, 133 (2005).
[CrossRef]

Other (2)

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, (John Wiley & Sons, 1991)
[CrossRef]

A. Taflove, Computational Electromagnetics, (Artech, Boston, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic of metallic electrode (orange)-single mode nitride (red) waveguide structure. Left (Right) schematic is top down (cross-sectional) view. In all simulations oxide cladding is assumed.

Fig. 2.
Fig. 2.

(a) (Upper plot) Peak waveguide transmitted power through 3 micron long Cu metal electrode structure as a function of metal core separation, d. (b) (Lower plot) Eigenmode effective index computed for cross-section in fig. 1 as a function of metal core separation, d. E parallel and E perp. refers to largest E field amplitudes.

Fig. 3.
Fig. 3.

Electric field profiles for 8 micron long metallic electrode with polarization perpendicular to metal surface. Upper (Lower) plot is for electrode core separation 0.2 (0.6) microns. Inset shows slice along waveguide core (black line).

Fig. 4.
Fig. 4.

Electric field profiles for 8 micron long metallic electrode with polarization parallel to metal surface. Upper (Lower) plot is for electrode core separation 0.2 (0.6) microns.

Fig. 5.
Fig. 5.

Schematic of experimental set up (upper figure). Lower image shows two Cu electrodes (L=~70 microns) with single mode waveguide in center of electrode structure. Waveguide core is 0.35 microns wide and metal waveguide separation ~1.4 microns.

Tables (2)

Tables Icon

Table 1. Normalized transmittance and extinction ratio for various waveguide core/ metal electrode separations (L=70 micron long metal electrode structures).

Tables Icon

Table 2. Insertion loss for each polarization vs. metal electrode separation (70 micron length)

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

k sp = ω c ε m ( ω ) ε c ε m ( ω ) + ε c = ω c ( N sp + i K sp )
P = T T + T P = T T + T

Metrics