Abstract

We investigate transmission of a normally incident, linearly polarized plane wave through a circular sub-wavelength hole in a metal film filled by a high index dielectric medium. We demonstrate for the first time that the trans-mission efficiency of such holes exhibits a Fabry-Pérot like behaviour versus thickness of the metal film, similar to that exhibited by sub-wavelength slits in metal films illuminated by TM-polarized plane waves. We show that by reducing the imaginary part of the propagation constant of the hybrid HE11 mode and by fortifying the Fabry-Pérot resonance, the high index dielectric filling can greatly enhance light transmission through a circular sub-wavelength hole.

© 2005 Optical Society of America

PDF Article

References

  • View by:
  • |

  1. H. A. Bethe, �??Theory of Diffraction by Small Holes,�?? Phys. Rev. 66, 163-182 (1944).
    [CrossRef]
  2. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite Difference Time Domain Method (Second Edition, Artech House, Boston, 2000).
  3. A. R. Zakharian, M. Mansuripur, and J. V. Moloney, "Transmission of light through small elliptical apertures," Opt. Express 12, 2631-2648 (2004), <a href= �??http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-12-2631�??>http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-12-2631</a>.
    [CrossRef]
  4. C. Hafner, The Generalized Multipole Technique for Computational Electromagnetics (Artech House, Boston, (1990).
  5. R. Wannemacher, �??Plasmon supported transmission of light through nanometric hole in metallic thin films,�?? Optics comm. 195, 107-118 (2001).
  6. J. Jin, The Finite Element Method in Electromagnetics (John Wiley & Sons, New York, 2002).
  7. A. P. Hippins, J. R. Sambles, and C. R. Lawrence, �??Gratingless enhanced microwave transmission through a subwavelength aperture in a thick metal plate,�?? Appl. Phys. Lett. 81, 4661-4663 (2002).
    [CrossRef]
  8. F. J. Garcia de Abajo, "Light transmission through a single cylindrical hole in a metallic film," Opt. Express 10, 1475-1484 (2002), <a href= �??http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-25-1475�??>http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-25-1475</a>.
  9. T. Thio, K. M. Pellerin, and R. A. Linke, �??Enhanced light transmission through a single subwavelength aperture,�?? Optics Lett. 26, 1972-1974 (2001).
  10. A. Degiron and T. W. Ebbesen, "Analysis of the transmission process through single apertures surrounded by periodic corrugations," Opt. Express 12, 3694-3700 (2004), <a href= �??http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-16-3694�??>http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-16-3694</a>.
    [CrossRef]
  11. P. B. Johnson and R. W. Christy, �??Optical Constants of the Noble Metals,�?? Phys. Rev. B 6, 4370-4379 (1972).
    [CrossRef]
  12. M. Okoniewski, M. Mrozowski, and M. A. Stuchly, �??Simple Treatment of Multi-Term Dispersion in FDTD,�?? IEEE Microwave Guided Wave Lett. 7, 121-123 (1997).
    [CrossRef]
  13. Y. Takakura, �??Optical Resonance in a Narrow Slit in a Thick Metallic Screen,�?? Phys. Rev. Lett. 86, 5601�??603 (2001).
    [CrossRef]
  14. K. Okamoto, Fundamentals of Optical Waveguides (Academic Press, San Diego, 2000).
  15. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, New York, 1985).

Appl. Phys. Lett.

A. P. Hippins, J. R. Sambles, and C. R. Lawrence, �??Gratingless enhanced microwave transmission through a subwavelength aperture in a thick metal plate,�?? Appl. Phys. Lett. 81, 4661-4663 (2002).
[CrossRef]

IEEE Microwave Guided Wave Lett.

M. Okoniewski, M. Mrozowski, and M. A. Stuchly, �??Simple Treatment of Multi-Term Dispersion in FDTD,�?? IEEE Microwave Guided Wave Lett. 7, 121-123 (1997).
[CrossRef]

Opt. Express

Optics comm.

R. Wannemacher, �??Plasmon supported transmission of light through nanometric hole in metallic thin films,�?? Optics comm. 195, 107-118 (2001).

Optics Lett.

T. Thio, K. M. Pellerin, and R. A. Linke, �??Enhanced light transmission through a single subwavelength aperture,�?? Optics Lett. 26, 1972-1974 (2001).

Phys. Rev.

H. A. Bethe, �??Theory of Diffraction by Small Holes,�?? Phys. Rev. 66, 163-182 (1944).
[CrossRef]

Phys. Rev. B

P. B. Johnson and R. W. Christy, �??Optical Constants of the Noble Metals,�?? Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

Phys. Rev. Lett.

Y. Takakura, �??Optical Resonance in a Narrow Slit in a Thick Metallic Screen,�?? Phys. Rev. Lett. 86, 5601�??603 (2001).
[CrossRef]

Other

K. Okamoto, Fundamentals of Optical Waveguides (Academic Press, San Diego, 2000).

E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, New York, 1985).

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite Difference Time Domain Method (Second Edition, Artech House, Boston, 2000).

C. Hafner, The Generalized Multipole Technique for Computational Electromagnetics (Artech House, Boston, (1990).

J. Jin, The Finite Element Method in Electromagnetics (John Wiley & Sons, New York, 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics