Abstract

We demonstrate the optical manipulation of cells and dielectric particles on the surface of silicon nitride waveguides. Glass particles with 2µm diameter are propelled at velocities of 15µm/s with a guided power of 20mW. This is approximately 20 times more efficient than previously reported, and permits to use this device on low refractive index objects such as cells. Red blood cells and yeast cells can be trapped on the waveguide and pushed along it by the action of optical forces. This kind of system can easily be combined with various integrated optical structures and opens the way to the development of new microsystems for cell sorting applications.

© 2005 Optical Society of America

PDF Article

References

  • View by:
  • |

  1. A. Ashkin, �??Acceleration and trapping of particles by radiation pressure ,�?? Phys. Rev. Lett. 24, 156-159 (1970)
    [CrossRef]
  2. A. Ashkin and J. M. Dziedzic, �??Optical trapping and manipulation of viruses and bacteria,�?? Science 235, 1517-1520 (1987)
    [CrossRef]
  3. P. Korda, G. C. Spalding, E. R. Dufresne and D. G. Grier, �??Nanofabrication with holographic optical tweezers,�?? Rev. Sci. Instr. 73, 1956-1957 (2002)
    [CrossRef]
  4. J. Arlt, V. Garces-Chavez, W. Sibbett and K. Dholakia, �??Optical micromanipulation using a Bessel light beam,�?? Opt. Commun. 197, 239-245 (2001)
    [CrossRef]
  5. E. R. Dufresne and D. G. Grier �??Optical tweezers arrays and optical substrates created with diffractive optics,�?? Rev. Sci. Instr. 69, 1974-1977 (1998)
    [CrossRef]
  6. R. A. Flynn, A. L. Birkbeck, M. Gross, M. Ozkan, B. Shao, M. M. Wang, and S. C. Esener, �??Parallel transport of biological cells using individually addressable VCSEL arrays as optical tweezers,�?? Sens. Actuators B 87, 239-243 (2002)
    [CrossRef]
  7. H. Andersson and A.Van Der Berg, �??Microfluidic devices for cellomics: a review,�?? Sens. Actuators B 92, 315-325 (2003)
    [CrossRef]
  8. M. M. Wang, E. Tu, D. E. Raymond, J. Mo Yang, H. Zhang, N. Hagen, B. Dees, E. M. Mercer, A. H. Forster, I. Kariv, P. J. Marchand and W. F. Butler, �?? Microfluidic sorting of mammalian cells by optical force switching,�?? Nature Biotech. 23 (1), 83-87 (2005)
    [CrossRef]
  9. M. P. MacDonald, G. C. Spalding and K. Dholakia, �??Microfluidic sorting in an optical lattice,�?? Nature 426, 421-424 (2003)
    [CrossRef]
  10. S. Kawata and T. Sugiura, �??Movement of micrometer-sized particles in the evanescent field of a laser beam,�?? Opt. Lett. 17, 772-774 (1992)
  11. S. Kawata and T. Tani, �??Optically driven Mie particles in an evanescent field along a channeled waveguide,�?? Opt. Lett. 21, 1768-1770 (1996)
  12. L. N. Ng, B. J. Luff, M. N. Zervas and J. S. Wilkinson, �??Propulsion of gold nanoparticles on optical waveguides,�?? Opt. Commun. 208, 117-124 (2002)
    [CrossRef]
  13. K. Grujic, O. G. Hellesø, J. P. Hole and J. S. Wilkinson �??Sorting of polystyrene microspheres using a Ybranches optical waveguide,�?? Opt. Express 13, 1-7 (2005), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-1-1">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-1-1</a>
    [CrossRef]
  14. K. Grujic, O. G. Hellesø, J. S. Wilkinson and J. P. Hole, �??Optical propulsion of microspheres along a channel waveguide produced by Cs+ ion-exchange in glass,�?? Opt. Commun. 239, 227-235 (2004)
    [CrossRef]
  15. H.Y. Jaising and O.G. Hellesø, �??Radiation forces on a Mie particle in the evanescent field of an optical waveguide,�?? Opt. Commun. 246, 373-383 (2005)
    [CrossRef]
  16. J. D. Jackson, �??Classical electrodynamics,�?? Wiley (1975)
  17. I. Brevik, �??Experiments in phenomenological electrodynamics and the energy-momentum tensor,�?? Phys. Rep. 52, 133-201 (1979)
    [CrossRef]
  18. R.C. Gauthier, �?? Computation of the optical trapping force using an FDTD based technique,�?? Opt. Express 13 (10), 3707-3718 (2005), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-10-3707">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-10-3707</a>
    [CrossRef]
  19. K. Beilenhoff, H. Heinrich and H. L. Hartnagel, �?? Improved finite difference formulation in frequency domain for three dimensional scattering problems,�?? IEEE Trans. Microw. Theory 40, 540-546 (1992)
  20. L. N. Ng, B. J. Luff, M. N. Zervas and J. S. Wilkinson, �??Forces on a Rayleigh particle in the cover region of a planar waveguide,�?? J. Lightwave Technol. 18, 388-400 (2000)
    [CrossRef]

IEEE Trans. Microw. Theory (1)

K. Beilenhoff, H. Heinrich and H. L. Hartnagel, �?? Improved finite difference formulation in frequency domain for three dimensional scattering problems,�?? IEEE Trans. Microw. Theory 40, 540-546 (1992)

J. Lightwave Technol. (1)

Nature (1)

M. P. MacDonald, G. C. Spalding and K. Dholakia, �??Microfluidic sorting in an optical lattice,�?? Nature 426, 421-424 (2003)
[CrossRef]

Nature Biotech. (1)

M. M. Wang, E. Tu, D. E. Raymond, J. Mo Yang, H. Zhang, N. Hagen, B. Dees, E. M. Mercer, A. H. Forster, I. Kariv, P. J. Marchand and W. F. Butler, �?? Microfluidic sorting of mammalian cells by optical force switching,�?? Nature Biotech. 23 (1), 83-87 (2005)
[CrossRef]

Opt. Commun. (4)

J. Arlt, V. Garces-Chavez, W. Sibbett and K. Dholakia, �??Optical micromanipulation using a Bessel light beam,�?? Opt. Commun. 197, 239-245 (2001)
[CrossRef]

L. N. Ng, B. J. Luff, M. N. Zervas and J. S. Wilkinson, �??Propulsion of gold nanoparticles on optical waveguides,�?? Opt. Commun. 208, 117-124 (2002)
[CrossRef]

K. Grujic, O. G. Hellesø, J. S. Wilkinson and J. P. Hole, �??Optical propulsion of microspheres along a channel waveguide produced by Cs+ ion-exchange in glass,�?? Opt. Commun. 239, 227-235 (2004)
[CrossRef]

H.Y. Jaising and O.G. Hellesø, �??Radiation forces on a Mie particle in the evanescent field of an optical waveguide,�?? Opt. Commun. 246, 373-383 (2005)
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Phys. Rep. (1)

I. Brevik, �??Experiments in phenomenological electrodynamics and the energy-momentum tensor,�?? Phys. Rep. 52, 133-201 (1979)
[CrossRef]

Phys. Rev. Lett. (1)

A. Ashkin, �??Acceleration and trapping of particles by radiation pressure ,�?? Phys. Rev. Lett. 24, 156-159 (1970)
[CrossRef]

Rev. Sci. Instr. (2)

P. Korda, G. C. Spalding, E. R. Dufresne and D. G. Grier, �??Nanofabrication with holographic optical tweezers,�?? Rev. Sci. Instr. 73, 1956-1957 (2002)
[CrossRef]

E. R. Dufresne and D. G. Grier �??Optical tweezers arrays and optical substrates created with diffractive optics,�?? Rev. Sci. Instr. 69, 1974-1977 (1998)
[CrossRef]

Science (1)

A. Ashkin and J. M. Dziedzic, �??Optical trapping and manipulation of viruses and bacteria,�?? Science 235, 1517-1520 (1987)
[CrossRef]

Sens. Actuators B (2)

R. A. Flynn, A. L. Birkbeck, M. Gross, M. Ozkan, B. Shao, M. M. Wang, and S. C. Esener, �??Parallel transport of biological cells using individually addressable VCSEL arrays as optical tweezers,�?? Sens. Actuators B 87, 239-243 (2002)
[CrossRef]

H. Andersson and A.Van Der Berg, �??Microfluidic devices for cellomics: a review,�?? Sens. Actuators B 92, 315-325 (2003)
[CrossRef]

Other (1)

J. D. Jackson, �??Classical electrodynamics,�?? Wiley (1975)

Supplementary Material (3)

» Media 1: MPG (2388 KB)     
» Media 2: MPG (1012 KB)     
» Media 3: MPG (2013 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics