Abstract

We explore the functionalities of a generalized phase contrast (GPC) -based multiple-beam trapping system for the actuation of various microfabricated SiO2 structures in liquid suspension. The arrays of optical traps are formed using two counterpropagating light fields, each of which is spatially reconfigurable in both cross-sectional geometry and intensity distribution, either in a user-interactive manner or under computer supervision. Design of microtools includes multiple appendages with rounded endings by which optical traps hold and three-dimensionally actuate individual tools. Proof-of-principle demonstrations show the collective and user-coordinated utility of multiple beams for driving microstructured objects. The potential to integrate these optically powered microtools may lead to more complex miniaturized machineries – a closely achievable goal with the real-time reconfigurable optical traps employed in this work.

© 2005 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Hybrid optical tweezers for dynamic micro-bead arrays

Yoshio Tanaka, Shogo Tsutsui, Mitsuru Ishikawa, and Hiroyuki Kitajima
Opt. Express 19(16) 15445-15451 (2011)

GPC-based optical micromanipulation in 3D real-time using a single spatial light modulator

Peter John Rodrigo, Ivan R. Perch-Nielsen, Carlo Amadeo Alonzo, and Jesper Glückstad
Opt. Express 14(26) 13107-13112 (2006)

Real-time interactive 3D manipulation of particles viewed in two orthogonal observation planes

Ivan R. Perch-Nielsen, Peter John Rodrigo, and Jesper Glückstad
Opt. Express 13(8) 2852-2857 (2005)

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156–159 (1970).
    [Crossref]
  2. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986).
    [Crossref] [PubMed]
  3. S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices - Micromachines can be created with higher resolution using two-photon absorption,” Nature 412, 697–698 (2001).
    [Crossref] [PubMed]
  4. S. Maruo, K. Ikuta, and H. Korogi, “Submicron manipulation tools driven by light in a liquid,” Appl. Phys. Lett. 82, 133–135 (2003).
    [Crossref]
  5. E. Higurashi, H. Ukita, H. Tanaka, and O. Ohguchi, “Optically induce rotation of anisotropic micro-objects fabricated by surface micromachining,” Appl. Phys. Lett. 64, 2209–2210 (1994).
    [Crossref]
  6. P. Galajda and P. Ormos, “Complex micromachines produced and driven by light,” Appl. Phys. Lett. 78, 249–251 (2001).
    [Crossref]
  7. P. Galajda and P. Ormos, “Rotors produced and driven in laser tweezers with reversed direction of rotation,” Appl. Phys. Lett. 80, 4653–4655 (2002).
    [Crossref]
  8. E. Higurashi, R. Sawada, and T. Ito, “Optically driven angular alignment of microcomponents made of in-plane birefringent polyimide film based on optical angular momentum transfer,” J. Micromech. Microeng. 11, 140–145 (2001).
    [Crossref]
  9. M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature 394, 348–350 (1998).
    [Crossref]
  10. The peer-review process made us aware of a recent article [S.L. Neale, M. P. MacDonald, K. Dholakia, and T. F. Krauss, “All-optical control of microfluidic components using form birefringence”, Nat. Mat. 4, 530–533 (2005)] that shows rotation of a microfabricated structure in a circularly polarized light due to form birefringence.
    [Crossref]
  11. R. C. Gauthier, “Theoretical investigation of the optical trapping force and torque on cylindrical micro-objects,” J. Opt. Soc. Am. B 143323–3333 (1997).
    [Crossref]
  12. Z. Cheng, P. M. Chaikin, and T. G. Mason, “Light streak tracking of optically trapped thin microdisks,” Phys. Rev. Lett. 89, 108303 (2002).
    [Crossref] [PubMed]
  13. J. Glückstad, “Phase contrast image synthesis,” Opt. Commun. 130, 225–230 (1996).
    [Crossref]
  14. J. Glückstad and P. C. Mogensen, “Optimal phase contrast in common-path interferometry,” Appl. Opt. 40, 268–282 (2001).
    [Crossref]
  15. P. J. Rodrigo, V. R. Daria, and J. Glückstad, “Real-time three-dimensional optical micromanipulation of multiple particles and living cells,” Opt. Lett. 29, 2270–2272 (2004).
    [Crossref] [PubMed]
  16. P. J. Rodrigo, V. R. Daria, and J. Glückstad, “Four-dimensional optical manipulation of colloidal particles,” Appl. Phys. Lett. 86, 074103 (2005).
    [Crossref]
  17. I. R. Perch-Nielsen, P. J. Rodrigo, and J. Glückstad, “Real-time interactive 3D manipulation of particles viewed in two orthogonal observation planes,” Opt. Express 18, 2852–2857 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-8-2852.
    [Crossref]
  18. J. Glückstad, I. R. Perch-Nielsen, and P. J. Rodrigo, in preparation.

2005 (3)

The peer-review process made us aware of a recent article [S.L. Neale, M. P. MacDonald, K. Dholakia, and T. F. Krauss, “All-optical control of microfluidic components using form birefringence”, Nat. Mat. 4, 530–533 (2005)] that shows rotation of a microfabricated structure in a circularly polarized light due to form birefringence.
[Crossref]

P. J. Rodrigo, V. R. Daria, and J. Glückstad, “Four-dimensional optical manipulation of colloidal particles,” Appl. Phys. Lett. 86, 074103 (2005).
[Crossref]

I. R. Perch-Nielsen, P. J. Rodrigo, and J. Glückstad, “Real-time interactive 3D manipulation of particles viewed in two orthogonal observation planes,” Opt. Express 18, 2852–2857 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-8-2852.
[Crossref]

2004 (1)

2003 (1)

S. Maruo, K. Ikuta, and H. Korogi, “Submicron manipulation tools driven by light in a liquid,” Appl. Phys. Lett. 82, 133–135 (2003).
[Crossref]

2002 (2)

P. Galajda and P. Ormos, “Rotors produced and driven in laser tweezers with reversed direction of rotation,” Appl. Phys. Lett. 80, 4653–4655 (2002).
[Crossref]

Z. Cheng, P. M. Chaikin, and T. G. Mason, “Light streak tracking of optically trapped thin microdisks,” Phys. Rev. Lett. 89, 108303 (2002).
[Crossref] [PubMed]

2001 (4)

J. Glückstad and P. C. Mogensen, “Optimal phase contrast in common-path interferometry,” Appl. Opt. 40, 268–282 (2001).
[Crossref]

E. Higurashi, R. Sawada, and T. Ito, “Optically driven angular alignment of microcomponents made of in-plane birefringent polyimide film based on optical angular momentum transfer,” J. Micromech. Microeng. 11, 140–145 (2001).
[Crossref]

S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices - Micromachines can be created with higher resolution using two-photon absorption,” Nature 412, 697–698 (2001).
[Crossref] [PubMed]

P. Galajda and P. Ormos, “Complex micromachines produced and driven by light,” Appl. Phys. Lett. 78, 249–251 (2001).
[Crossref]

1998 (1)

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature 394, 348–350 (1998).
[Crossref]

1997 (1)

1996 (1)

J. Glückstad, “Phase contrast image synthesis,” Opt. Commun. 130, 225–230 (1996).
[Crossref]

1994 (1)

E. Higurashi, H. Ukita, H. Tanaka, and O. Ohguchi, “Optically induce rotation of anisotropic micro-objects fabricated by surface micromachining,” Appl. Phys. Lett. 64, 2209–2210 (1994).
[Crossref]

1986 (1)

1970 (1)

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156–159 (1970).
[Crossref]

Ashkin, A.

Bjorkholm, J. E.

Chaikin, P. M.

Z. Cheng, P. M. Chaikin, and T. G. Mason, “Light streak tracking of optically trapped thin microdisks,” Phys. Rev. Lett. 89, 108303 (2002).
[Crossref] [PubMed]

Cheng, Z.

Z. Cheng, P. M. Chaikin, and T. G. Mason, “Light streak tracking of optically trapped thin microdisks,” Phys. Rev. Lett. 89, 108303 (2002).
[Crossref] [PubMed]

Chu, S.

Daria, V. R.

P. J. Rodrigo, V. R. Daria, and J. Glückstad, “Four-dimensional optical manipulation of colloidal particles,” Appl. Phys. Lett. 86, 074103 (2005).
[Crossref]

P. J. Rodrigo, V. R. Daria, and J. Glückstad, “Real-time three-dimensional optical micromanipulation of multiple particles and living cells,” Opt. Lett. 29, 2270–2272 (2004).
[Crossref] [PubMed]

Dholakia, K.

The peer-review process made us aware of a recent article [S.L. Neale, M. P. MacDonald, K. Dholakia, and T. F. Krauss, “All-optical control of microfluidic components using form birefringence”, Nat. Mat. 4, 530–533 (2005)] that shows rotation of a microfabricated structure in a circularly polarized light due to form birefringence.
[Crossref]

Dziedzic, J. M.

Friese, M. E. J.

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature 394, 348–350 (1998).
[Crossref]

Galajda, P.

P. Galajda and P. Ormos, “Rotors produced and driven in laser tweezers with reversed direction of rotation,” Appl. Phys. Lett. 80, 4653–4655 (2002).
[Crossref]

P. Galajda and P. Ormos, “Complex micromachines produced and driven by light,” Appl. Phys. Lett. 78, 249–251 (2001).
[Crossref]

Gauthier, R. C.

Glückstad, J.

I. R. Perch-Nielsen, P. J. Rodrigo, and J. Glückstad, “Real-time interactive 3D manipulation of particles viewed in two orthogonal observation planes,” Opt. Express 18, 2852–2857 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-8-2852.
[Crossref]

P. J. Rodrigo, V. R. Daria, and J. Glückstad, “Four-dimensional optical manipulation of colloidal particles,” Appl. Phys. Lett. 86, 074103 (2005).
[Crossref]

P. J. Rodrigo, V. R. Daria, and J. Glückstad, “Real-time three-dimensional optical micromanipulation of multiple particles and living cells,” Opt. Lett. 29, 2270–2272 (2004).
[Crossref] [PubMed]

J. Glückstad and P. C. Mogensen, “Optimal phase contrast in common-path interferometry,” Appl. Opt. 40, 268–282 (2001).
[Crossref]

J. Glückstad, “Phase contrast image synthesis,” Opt. Commun. 130, 225–230 (1996).
[Crossref]

J. Glückstad, I. R. Perch-Nielsen, and P. J. Rodrigo, in preparation.

Heckenberg, N. R.

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature 394, 348–350 (1998).
[Crossref]

Higurashi, E.

E. Higurashi, R. Sawada, and T. Ito, “Optically driven angular alignment of microcomponents made of in-plane birefringent polyimide film based on optical angular momentum transfer,” J. Micromech. Microeng. 11, 140–145 (2001).
[Crossref]

E. Higurashi, H. Ukita, H. Tanaka, and O. Ohguchi, “Optically induce rotation of anisotropic micro-objects fabricated by surface micromachining,” Appl. Phys. Lett. 64, 2209–2210 (1994).
[Crossref]

Ikuta, K.

S. Maruo, K. Ikuta, and H. Korogi, “Submicron manipulation tools driven by light in a liquid,” Appl. Phys. Lett. 82, 133–135 (2003).
[Crossref]

Ito, T.

E. Higurashi, R. Sawada, and T. Ito, “Optically driven angular alignment of microcomponents made of in-plane birefringent polyimide film based on optical angular momentum transfer,” J. Micromech. Microeng. 11, 140–145 (2001).
[Crossref]

Kawata, S.

S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices - Micromachines can be created with higher resolution using two-photon absorption,” Nature 412, 697–698 (2001).
[Crossref] [PubMed]

Korogi, H.

S. Maruo, K. Ikuta, and H. Korogi, “Submicron manipulation tools driven by light in a liquid,” Appl. Phys. Lett. 82, 133–135 (2003).
[Crossref]

Krauss, T. F.

The peer-review process made us aware of a recent article [S.L. Neale, M. P. MacDonald, K. Dholakia, and T. F. Krauss, “All-optical control of microfluidic components using form birefringence”, Nat. Mat. 4, 530–533 (2005)] that shows rotation of a microfabricated structure in a circularly polarized light due to form birefringence.
[Crossref]

MacDonald, M. P.

The peer-review process made us aware of a recent article [S.L. Neale, M. P. MacDonald, K. Dholakia, and T. F. Krauss, “All-optical control of microfluidic components using form birefringence”, Nat. Mat. 4, 530–533 (2005)] that shows rotation of a microfabricated structure in a circularly polarized light due to form birefringence.
[Crossref]

Maruo, S.

S. Maruo, K. Ikuta, and H. Korogi, “Submicron manipulation tools driven by light in a liquid,” Appl. Phys. Lett. 82, 133–135 (2003).
[Crossref]

Mason, T. G.

Z. Cheng, P. M. Chaikin, and T. G. Mason, “Light streak tracking of optically trapped thin microdisks,” Phys. Rev. Lett. 89, 108303 (2002).
[Crossref] [PubMed]

Mogensen, P. C.

Neale, S.L.

The peer-review process made us aware of a recent article [S.L. Neale, M. P. MacDonald, K. Dholakia, and T. F. Krauss, “All-optical control of microfluidic components using form birefringence”, Nat. Mat. 4, 530–533 (2005)] that shows rotation of a microfabricated structure in a circularly polarized light due to form birefringence.
[Crossref]

Nieminen, T. A.

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature 394, 348–350 (1998).
[Crossref]

Ohguchi, O.

E. Higurashi, H. Ukita, H. Tanaka, and O. Ohguchi, “Optically induce rotation of anisotropic micro-objects fabricated by surface micromachining,” Appl. Phys. Lett. 64, 2209–2210 (1994).
[Crossref]

Ormos, P.

P. Galajda and P. Ormos, “Rotors produced and driven in laser tweezers with reversed direction of rotation,” Appl. Phys. Lett. 80, 4653–4655 (2002).
[Crossref]

P. Galajda and P. Ormos, “Complex micromachines produced and driven by light,” Appl. Phys. Lett. 78, 249–251 (2001).
[Crossref]

Perch-Nielsen, I. R.

I. R. Perch-Nielsen, P. J. Rodrigo, and J. Glückstad, “Real-time interactive 3D manipulation of particles viewed in two orthogonal observation planes,” Opt. Express 18, 2852–2857 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-8-2852.
[Crossref]

J. Glückstad, I. R. Perch-Nielsen, and P. J. Rodrigo, in preparation.

Rodrigo, P. J.

P. J. Rodrigo, V. R. Daria, and J. Glückstad, “Four-dimensional optical manipulation of colloidal particles,” Appl. Phys. Lett. 86, 074103 (2005).
[Crossref]

I. R. Perch-Nielsen, P. J. Rodrigo, and J. Glückstad, “Real-time interactive 3D manipulation of particles viewed in two orthogonal observation planes,” Opt. Express 18, 2852–2857 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-8-2852.
[Crossref]

P. J. Rodrigo, V. R. Daria, and J. Glückstad, “Real-time three-dimensional optical micromanipulation of multiple particles and living cells,” Opt. Lett. 29, 2270–2272 (2004).
[Crossref] [PubMed]

J. Glückstad, I. R. Perch-Nielsen, and P. J. Rodrigo, in preparation.

Rubinsztein-Dunlop, H.

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature 394, 348–350 (1998).
[Crossref]

Sawada, R.

E. Higurashi, R. Sawada, and T. Ito, “Optically driven angular alignment of microcomponents made of in-plane birefringent polyimide film based on optical angular momentum transfer,” J. Micromech. Microeng. 11, 140–145 (2001).
[Crossref]

Sun, H. B.

S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices - Micromachines can be created with higher resolution using two-photon absorption,” Nature 412, 697–698 (2001).
[Crossref] [PubMed]

Takada, K.

S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices - Micromachines can be created with higher resolution using two-photon absorption,” Nature 412, 697–698 (2001).
[Crossref] [PubMed]

Tanaka, H.

E. Higurashi, H. Ukita, H. Tanaka, and O. Ohguchi, “Optically induce rotation of anisotropic micro-objects fabricated by surface micromachining,” Appl. Phys. Lett. 64, 2209–2210 (1994).
[Crossref]

Tanaka, T.

S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices - Micromachines can be created with higher resolution using two-photon absorption,” Nature 412, 697–698 (2001).
[Crossref] [PubMed]

Ukita, H.

E. Higurashi, H. Ukita, H. Tanaka, and O. Ohguchi, “Optically induce rotation of anisotropic micro-objects fabricated by surface micromachining,” Appl. Phys. Lett. 64, 2209–2210 (1994).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (5)

P. J. Rodrigo, V. R. Daria, and J. Glückstad, “Four-dimensional optical manipulation of colloidal particles,” Appl. Phys. Lett. 86, 074103 (2005).
[Crossref]

S. Maruo, K. Ikuta, and H. Korogi, “Submicron manipulation tools driven by light in a liquid,” Appl. Phys. Lett. 82, 133–135 (2003).
[Crossref]

E. Higurashi, H. Ukita, H. Tanaka, and O. Ohguchi, “Optically induce rotation of anisotropic micro-objects fabricated by surface micromachining,” Appl. Phys. Lett. 64, 2209–2210 (1994).
[Crossref]

P. Galajda and P. Ormos, “Complex micromachines produced and driven by light,” Appl. Phys. Lett. 78, 249–251 (2001).
[Crossref]

P. Galajda and P. Ormos, “Rotors produced and driven in laser tweezers with reversed direction of rotation,” Appl. Phys. Lett. 80, 4653–4655 (2002).
[Crossref]

J. Micromech. Microeng. (1)

E. Higurashi, R. Sawada, and T. Ito, “Optically driven angular alignment of microcomponents made of in-plane birefringent polyimide film based on optical angular momentum transfer,” J. Micromech. Microeng. 11, 140–145 (2001).
[Crossref]

J. Opt. Soc. Am. B (1)

Nat. Mat. (1)

The peer-review process made us aware of a recent article [S.L. Neale, M. P. MacDonald, K. Dholakia, and T. F. Krauss, “All-optical control of microfluidic components using form birefringence”, Nat. Mat. 4, 530–533 (2005)] that shows rotation of a microfabricated structure in a circularly polarized light due to form birefringence.
[Crossref]

Nature (2)

S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices - Micromachines can be created with higher resolution using two-photon absorption,” Nature 412, 697–698 (2001).
[Crossref] [PubMed]

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature 394, 348–350 (1998).
[Crossref]

Opt. Commun. (1)

J. Glückstad, “Phase contrast image synthesis,” Opt. Commun. 130, 225–230 (1996).
[Crossref]

Opt. Express (1)

I. R. Perch-Nielsen, P. J. Rodrigo, and J. Glückstad, “Real-time interactive 3D manipulation of particles viewed in two orthogonal observation planes,” Opt. Express 18, 2852–2857 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-8-2852.
[Crossref]

Opt. Lett. (2)

Phys. Rev. Lett. (2)

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156–159 (1970).
[Crossref]

Z. Cheng, P. M. Chaikin, and T. G. Mason, “Light streak tracking of optically trapped thin microdisks,” Phys. Rev. Lett. 89, 108303 (2002).
[Crossref] [PubMed]

Other (1)

J. Glückstad, I. R. Perch-Nielsen, and P. J. Rodrigo, in preparation.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

SEM images of SiO2 microfabricated structures.

Fig. 2.
Fig. 2.

Explanatory illustration of an optically actuated four-limbed micofabricated structure. (a) Respective counterpropagating-beam traps, formed by s-polarized (down-pointed arrows) and p-polarized (up-pointed arrows) beams, are positioned at all four circular handles. Arrow length is proportional to beam power. (b) Purely translational displacement Δ r of the structure in 3D. (c) Angular orientation of the structure about a line parallel to the x-axis. (d) Angular orientation about a line at 45° with x-axis and y-axis.

Fig. 3.
Fig. 3.

Experimental results showing optical actuation of a microstructure. (a) Angular reorientation showing approximately 80° maximum angular deflection, which allows visual inspection of the structure’s flatness. (b) Axial displacement of the structure. (c) Rotation of the structure about a normal axis through its center. Scale bar, 20 μm.

Metrics