Abstract

We explore the functionalities of a generalized phase contrast (GPC) -based multiple-beam trapping system for the actuation of various microfabricated SiO2 structures in liquid suspension. The arrays of optical traps are formed using two counterpropagating light fields, each of which is spatially reconfigurable in both cross-sectional geometry and intensity distribution, either in a user-interactive manner or under computer supervision. Design of microtools includes multiple appendages with rounded endings by which optical traps hold and three-dimensionally actuate individual tools. Proof-of-principle demonstrations show the collective and user-coordinated utility of multiple beams for driving microstructured objects. The potential to integrate these optically powered microtools may lead to more complex miniaturized machineries �?? a closely achievable goal with the real-time reconfigurable optical traps employed in this work.

© 2005 Optical Society of America

PDF Article

References

  • View by:
  • |

  1. A. Ashkin, �??Acceleration and trapping of particles by radiation pressure,�?? Phys. Rev. Lett. 24, 156-159 (1970).
    [CrossRef]
  2. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, �??Observation of a single-beam gradient force optical trap for dielectric particles,�?? Opt. Lett. 11, 288-290 (1986).
  3. S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, �??Finer features for functional microdevices �?? Micromachines can be created with higher resolution using two-photon absorption,�?? Nature 412, 697-698 (2001).
    [CrossRef]
  4. S. Maruo, K. Ikuta, and H. Korogi, �??Submicron manipulation tools driven by light in a liquid,�?? Appl. Phys. Lett. 82, 133-135 (2003).
    [CrossRef]
  5. E. Higurashi, H. Ukita, H. Tanaka, and O. Ohguchi, �??Optically induce rotation of anisotropic micro-objects fabricated by surface micromachining,�?? Appl. Phys. Lett. 64, 2209-2210 (1994).
    [CrossRef]
  6. P. Galajda and P. Ormos, �??Complex micromachines produced and driven by light,�?? Appl. Phys. Lett. 78, 249-251 (2001).
    [CrossRef]
  7. P. Galajda and P. Ormos, �??Rotors produced and driven in laser tweezers with reversed direction of rotation,�?? Appl. Phys. Lett. 80, 4653-4655 (2002).
    [CrossRef]
  8. E. Higurashi, R. Sawada, and T. Ito, �??Optically driven angular alignment of microcomponents made of inplane birefringent polyimide film based on optical angular momentum transfer,�?? J. Micromech. Microeng. 11, 140-145 (2001).
    [CrossRef]
  9. M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, �??Optical alignment and spinning of laser-trapped microscopic particles,�?? Nature 394, 348-350 (1998).
    [CrossRef]
  10. The peer-review process made us aware of a recent article [S.L. Neale, M. P. MacDonald, K. Dholakia and T. F. Krauss, �??All-optical control of microfluidic components using form birefringence�??, Nat. Mat. 4, 530-533 (2005)] that shows rotation of a microfabricated structure in a circularly polarized light due to form birefringence.
  11. R. C. Gauthier, �??Theoretical investigation of the optical trapping force and torque on cylindrical micro-objects,�?? J. Opt. Soc. Am. B 14 3323-3333 (1997).
  12. Z. Cheng, P. M. Chaikin, and T. G. Mason, �??Light streak tracking of optically trapped thin microdisks,�?? Phys. Rev. Lett. 89, 108303 (2002).
    [CrossRef]
  13. J. Glückstad, �??Phase contrast image synthesis,�?? Opt. Commun. 130, 225-230 (1996).
  14. J. Glückstad and P. C. Mogensen, �??Optimal phase contrast in common-path interferometry,�?? Appl. Opt. 40, 268-282 (2001).
  15. P. J. Rodrigo, V. R. Daria, and J. Glückstad, �??Real-time three-dimensional optical micromanipulation of multiple particles and living cells,�?? Opt. Lett. 29, 2270-2272 (2004).
    [CrossRef]
  16. P. J. Rodrigo, V. R. Daria, and J. Glückstad, �??Four-dimensional optical manipulation of colloidal particles,�?? Appl. Phys. Lett. 86, 074103 (2005).
    [CrossRef]
  17. I. R. Perch-Nielsen, P. J. Rodrigo, and J. Glückstad, �??Real-time interactive 3D manipulation of particles viewed in two orthogonal observation planes,�?? Opt. Express 18, 2852-2857 (2005), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-8-2852.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-8-2852.</a>
  18. J. Glückstad, I. R. Perch-Nielsen, and P. J. Rodrigo, in preparation.

Appl. Opt.

Appl. Phys. Lett.

P. J. Rodrigo, V. R. Daria, and J. Glückstad, �??Four-dimensional optical manipulation of colloidal particles,�?? Appl. Phys. Lett. 86, 074103 (2005).
[CrossRef]

S. Maruo, K. Ikuta, and H. Korogi, �??Submicron manipulation tools driven by light in a liquid,�?? Appl. Phys. Lett. 82, 133-135 (2003).
[CrossRef]

E. Higurashi, H. Ukita, H. Tanaka, and O. Ohguchi, �??Optically induce rotation of anisotropic micro-objects fabricated by surface micromachining,�?? Appl. Phys. Lett. 64, 2209-2210 (1994).
[CrossRef]

P. Galajda and P. Ormos, �??Complex micromachines produced and driven by light,�?? Appl. Phys. Lett. 78, 249-251 (2001).
[CrossRef]

P. Galajda and P. Ormos, �??Rotors produced and driven in laser tweezers with reversed direction of rotation,�?? Appl. Phys. Lett. 80, 4653-4655 (2002).
[CrossRef]

J. Micromech. Microeng.

E. Higurashi, R. Sawada, and T. Ito, �??Optically driven angular alignment of microcomponents made of inplane birefringent polyimide film based on optical angular momentum transfer,�?? J. Micromech. Microeng. 11, 140-145 (2001).
[CrossRef]

J. Opt. Soc. Am. B

Nat. Mat.

The peer-review process made us aware of a recent article [S.L. Neale, M. P. MacDonald, K. Dholakia and T. F. Krauss, �??All-optical control of microfluidic components using form birefringence�??, Nat. Mat. 4, 530-533 (2005)] that shows rotation of a microfabricated structure in a circularly polarized light due to form birefringence.

Nature

S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, �??Finer features for functional microdevices �?? Micromachines can be created with higher resolution using two-photon absorption,�?? Nature 412, 697-698 (2001).
[CrossRef]

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, �??Optical alignment and spinning of laser-trapped microscopic particles,�?? Nature 394, 348-350 (1998).
[CrossRef]

Opt. Commun.

J. Glückstad, �??Phase contrast image synthesis,�?? Opt. Commun. 130, 225-230 (1996).

Opt. Express

I. R. Perch-Nielsen, P. J. Rodrigo, and J. Glückstad, �??Real-time interactive 3D manipulation of particles viewed in two orthogonal observation planes,�?? Opt. Express 18, 2852-2857 (2005), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-8-2852.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-8-2852.</a>

Opt. Lett.

Phys. Rev. Lett.

A. Ashkin, �??Acceleration and trapping of particles by radiation pressure,�?? Phys. Rev. Lett. 24, 156-159 (1970).
[CrossRef]

Z. Cheng, P. M. Chaikin, and T. G. Mason, �??Light streak tracking of optically trapped thin microdisks,�?? Phys. Rev. Lett. 89, 108303 (2002).
[CrossRef]

Other

J. Glückstad, I. R. Perch-Nielsen, and P. J. Rodrigo, in preparation.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics