Abstract

In this paper, a tightly focused evanescent field produced by a total internal reflection objective lens under the illumination of a radially polarized beam generated using a single liquid crystal phase modulator is investigated. The field distributions have been directly mapped by a scanning near-field optical microscope. It is demonstrated both theoretically and experimentally that the introduction of radially polarized beam illumination combining with an annular beam illumination exhibits advantages in two aspects. On one hand, it corrects the focus elongation and splitting in a focused evanescent field associated with a linearly polarized beam. On the other hand, it significantly improves the lateral localization to approximately a quarter of the illumination wavelength, which is less than half of the size that is achievable under linearly polarized illumination.

© 2005 Optical Society of America

PDF Article

References

  • View by:
  • |

  1. J. J. Macklin, J. K. Trautman, T. D. Harris, L. E. Brus, �??Imaging and time-resolved spectroscopy of single molecules at an interface,�?? Science 272, 255-258 (1996).
    [CrossRef]
  2. M. Tokunaga, K. Kitamura, K. Saito, A. H. Iwane and T. Yanagida, Biochem. �??Single molecule imaging of fluorophores and enzymatic reactions achieved by objective-type total internal reflection fluorescence microscopy,�?? Biophys. Res. Commun. 235, 47-53 (1997).
  3. B. Sick, B. Hecht, and L. Novotny, �??Orientational imaging of single molecules by annular illumination, �?? Phys. Rev. Lett. 85, 4482-4485 (2000).
    [CrossRef]
  4. N. Hayazawa, A. Tarun, Y. Inouye, and S. Kawata, �??Near-field enhanced Raman spectroscopy using side illumination optics,�?? J. Appl. Phys. 92, 6983-6986 (2002).
    [CrossRef]
  5. N. Hayazawa, Y. Inouye, and S. Kawata, �??Evanescent field excitation and measurement of dye fluorescence in a metallic probe near-field scanning optical microscope,�?? J. Microsc. 194, 472-476 (1999).
    [CrossRef]
  6. J. W. M. Chon and M. Gu, �??Scanning total internal reflection fluorescence microscopy under one-photon and two-photon excitation: image formation,�?? Appl. Opt. 43, 1063-1071 (2004).
    [CrossRef]
  7. M. Gu, J.-B. Haumonte, Y. M., J. W. M. Chon, and X. Gan, �??Laser trapping and manipulation under focused evanescent wave illumination,�?? Appl. Phys. Lett. 84, 4236-4238 (2004).
    [CrossRef]
  8. D. Ganic, X. Gan, Min Gu, �??Trapping force and optical lifting under focused evanescent wave illumination,�?? Opt. Express 12, 5533-5538 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-22-5533">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-22-5533</a>.
    [CrossRef]
  9. E. J. Sanchez, L. Novotny, X.S. Xie, "Near-field fluorescence microscopy based on two-photon excitation with metal tips," Phys. Rev. Lett. 82, 4014-4017 (1999).
  10. S. Takahashi, T. Fujimoto, K. Kato, and I. Kojimay, �??High resolution photon scanning tunneling microscope,�?? Nanotechnology 8, A54�??A57 (1997).
    [CrossRef]
  11. A. Bouhelier, M. R. Beversluis, and L. Novotny, �??Near-field scattering of longitudinal fields,�?? Appl. Phys. Lett. 82, 4596-4598 (2003).
    [CrossRef]
  12. B. Jia, X. Gan, and M. Gu, �??Direct observation of a pure focused evanescent field of a high numerical aperture objective lens by scanning near-field optical microscopy,�?? Appl. Phys. Lett. 86, 131110, (2005).
    [CrossRef]
  13. Q. Zhan and J. R. Leger, "Focus shaping using cylindrical vector beams," Opt. Express 10, 324-331 (2002), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-7-324">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-7-324</a>.
  14. R. Dorn, S. Quabis, and G. Leuchs, �??Sharper focus for a radially polarized light beam,�?? Phys. Rev. Lett. 91, 233901 (2003).
    [CrossRef]
  15. A. V. Nesterov, V. G. Niziev, and V. P. Yakunin, "Generation of high-power radially polarized beam," J. Phys. D Appl. Phys. 32, 2871-2875 (1999).
    [CrossRef]
  16. A. A. Tovar, "Production and propagation of cylindrically polarized LaguerreGaussian laser beams," J. Opt. Soc. Am. A, 15, 2705-2711 (1998).
  17. Z. Bomzon, G. Biener, V. Kleiner, and E. Hasman, "Radially and azimuthally polarized beams generated by space-variant dielectric subwavelength gratings," Opt. Lett. 27, 285-287 (2002).
  18. S. C. Tidwell, D. H. Ford, and W. D. Kimura, "Generating radially polarized beams interferometrically," Appl. Opt. 29, 2234-2239 (1990).
  19. K.S. Youngworth and T.G. Brown, �??Focusing of high numerical aperture cylindrical-vector beams,�?? Opt. Express 7, 77-87 (2000), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-7-2-77">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-7-2-77</a>.
  20. D. P. Biss and T. G. Brown, �??Cylindrical vector beam focusing through a dielectric interface,�?? Opt. Express 9, 490-497 (2001), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-5-967">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-5-967</a>.
  21. D. Loerke, B. Preitz, W. Stühmer, M. Oheim, "Superresolution measurements by evanescent-wave excitation of fluorescence using variable beam incidence," J. Biomed. Opt. 5, 23-30 (2000).
    [CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (3)

M. Gu, J.-B. Haumonte, Y. M., J. W. M. Chon, and X. Gan, �??Laser trapping and manipulation under focused evanescent wave illumination,�?? Appl. Phys. Lett. 84, 4236-4238 (2004).
[CrossRef]

A. Bouhelier, M. R. Beversluis, and L. Novotny, �??Near-field scattering of longitudinal fields,�?? Appl. Phys. Lett. 82, 4596-4598 (2003).
[CrossRef]

B. Jia, X. Gan, and M. Gu, �??Direct observation of a pure focused evanescent field of a high numerical aperture objective lens by scanning near-field optical microscopy,�?? Appl. Phys. Lett. 86, 131110, (2005).
[CrossRef]

Biophys. Res. Commun. (1)

M. Tokunaga, K. Kitamura, K. Saito, A. H. Iwane and T. Yanagida, Biochem. �??Single molecule imaging of fluorophores and enzymatic reactions achieved by objective-type total internal reflection fluorescence microscopy,�?? Biophys. Res. Commun. 235, 47-53 (1997).

J. Appl. Phys. (1)

N. Hayazawa, A. Tarun, Y. Inouye, and S. Kawata, �??Near-field enhanced Raman spectroscopy using side illumination optics,�?? J. Appl. Phys. 92, 6983-6986 (2002).
[CrossRef]

J. Biomed. Opt. (1)

D. Loerke, B. Preitz, W. Stühmer, M. Oheim, "Superresolution measurements by evanescent-wave excitation of fluorescence using variable beam incidence," J. Biomed. Opt. 5, 23-30 (2000).
[CrossRef]

J. Microsc. (1)

N. Hayazawa, Y. Inouye, and S. Kawata, �??Evanescent field excitation and measurement of dye fluorescence in a metallic probe near-field scanning optical microscope,�?? J. Microsc. 194, 472-476 (1999).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Phys. D Appl. Phys. (1)

A. V. Nesterov, V. G. Niziev, and V. P. Yakunin, "Generation of high-power radially polarized beam," J. Phys. D Appl. Phys. 32, 2871-2875 (1999).
[CrossRef]

Nanotechnology (1)

S. Takahashi, T. Fujimoto, K. Kato, and I. Kojimay, �??High resolution photon scanning tunneling microscope,�?? Nanotechnology 8, A54�??A57 (1997).
[CrossRef]

Opt. Express (4)

Opt. Lett. (1)

Phys. Rev. Lett. (2)

R. Dorn, S. Quabis, and G. Leuchs, �??Sharper focus for a radially polarized light beam,�?? Phys. Rev. Lett. 91, 233901 (2003).
[CrossRef]

B. Sick, B. Hecht, and L. Novotny, �??Orientational imaging of single molecules by annular illumination, �?? Phys. Rev. Lett. 85, 4482-4485 (2000).
[CrossRef]

Phys. Rev. Lett. 82 (1)

E. J. Sanchez, L. Novotny, X.S. Xie, "Near-field fluorescence microscopy based on two-photon excitation with metal tips," Phys. Rev. Lett. 82, 4014-4017 (1999).

Science (1)

J. J. Macklin, J. K. Trautman, T. D. Harris, L. E. Brus, �??Imaging and time-resolved spectroscopy of single molecules at an interface,�?? Science 272, 255-258 (1996).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics