Abstract

We experimentally ascertain the role of non locality in the spectral evolution of multifilament patterns generated by modulational instability in nematic liquid crystals.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. J. Sakurai, “Modern Quantum Mechanics” (Addison-Wesley, Reading, MA, 1994).
  2. R. A. Stern and J. F. Decker, “Nonlocal Instability of Finite-Amplitude Ion Waves,” Phys. Rev. Lett. 27, 1266–1271 (1971)
    [Crossref]
  3. B. Hessmo, P. Usachev, H. Heydari, and G. Björk, “Experimental demonstration of single photon nonlocality,” Phys. Rev. Lett. 92, 180401 (2004).
    [Crossref] [PubMed]
  4. J. P. Gordon, R. C. Leite, R. S. Moore, and J. R. Whinnery, “Long-Transient Effects in Lasers with Inserted Liquid Samples,” J. Appl. Phys. 36, 3–8 (1965).
    [Crossref]
  5. D. Suter and T. Blasberg, “Stabilization of transverse solitary waves by a nonlocal response of nonlinear medium,” Phys. Rev. A 48, 4583–4587 (1993).
    [Crossref] [PubMed]
  6. A. A. Zozulya and D. Z. Anderson, “Propagation of an optical beam in a photorefractive medium in the presence of a photogalvanic nonlinearity or an externally applied electric-field,” Phys. Rev. A 51, 1520–1531 (1995).
    [Crossref] [PubMed]
  7. S. Gatz and J. Herrmann, “Anisotropy, nonlocality and space-charge field displacement in (2+1)-dimensional self-trapping in biased photorefractive crystals,” Opt. Lett. 23, 1176–1178 (1998).
    [Crossref]
  8. N. V. Tabiryan, A. V. Sukhov, and B. Y Zel’dovich, “Orientational nonlinearity of liquid-crystals,” Mol. Cryst. Liq. Cryst. 136, 1–139 (1986).
    [Crossref]
  9. I. C. Khoo, Liquid Crystals: Physical Properties and Nonlinear Optical Phenomena, (Wiley, New York, 1995).
  10. A. W. Snyder and D. J. Mitchell, “Accessible Solitons,” Science 276, 1538–1541 (1997).
    [Crossref]
  11. W. Królikowski, O. Bang, N. I. Nikolov, D. Neshev, J. Wyller, J. J. Rasmussen, and D. Edmundson, “Modulational instability, solitons and beam propagation in spatially nonlocal nonlinear media,” J. Opt. B 6, S288–S294 (2004).
    [Crossref]
  12. J. Wyller, W. Krolikowski, O. Bang, and J. J. Rasmussen, “Generic features of modulational instability in nonlocal Kerr media,” Phys. Rev. E 66, 066615 (2002).
    [Crossref]
  13. M. Peccianti, C. Conti, G. Assanto, A. De Luca, and C. Umeton, “Routing of Highly Anisotropic Spatial Solitons and Modulational Instability in liquid crystals,” Nature 432, 733–737 (2004).
    [Crossref] [PubMed]
  14. C. Conti, M. Peccianti, and G. Assanto, “Observation of optical solitons in a highly nonlocal medium,” Phys. Rev. Lett. 92, 113902 (2004).
    [Crossref] [PubMed]
  15. M. Peccianti and G. Assanto, “Nematic liquid crystals: a suitable medium for self-confinement of coherent and incoherent light,” Phys. Rev. E 65, 035603 (2002).
    [Crossref]
  16. M. Peccianti, C. Conti, and G. Assanto, “Interplay between nonlocality and nonlinearity in nematic liquid crystals,” Opt. Lett. 30, 415–417 (2005).
    [Crossref] [PubMed]
  17. M. Peccianti, C. Conti, E. Alberici, and G. Assanto, “Spatially incoherent modulational instability in a non local medium,” Laser Phys. Lett. 2, 25–29 (2005).
    [Crossref]
  18. M. Peccianti, C. Conti, and G. Assanto, “Optical modulational instability in a nonlocal medium,” Phys. Rev. E 68, 025602 (2003).
    [Crossref]
  19. V. I. Bespalov and V. I. Talanov, “Filamentary structure of light beams in nonlinear liquids,” JETP Lett. 3, 307–310 (1966).
  20. G. I. Stegeman, “Spatial Beam Instabilities Due to Instantaneous Nonlinear Mechanisms,” Proc. NATO ASI/SUSSP56 on “Ultrafast Photonics,” Ed. A. Miller (Inst. Physics Publishing, London, 2003).

2005 (2)

M. Peccianti, C. Conti, and G. Assanto, “Interplay between nonlocality and nonlinearity in nematic liquid crystals,” Opt. Lett. 30, 415–417 (2005).
[Crossref] [PubMed]

M. Peccianti, C. Conti, E. Alberici, and G. Assanto, “Spatially incoherent modulational instability in a non local medium,” Laser Phys. Lett. 2, 25–29 (2005).
[Crossref]

2004 (4)

W. Królikowski, O. Bang, N. I. Nikolov, D. Neshev, J. Wyller, J. J. Rasmussen, and D. Edmundson, “Modulational instability, solitons and beam propagation in spatially nonlocal nonlinear media,” J. Opt. B 6, S288–S294 (2004).
[Crossref]

M. Peccianti, C. Conti, G. Assanto, A. De Luca, and C. Umeton, “Routing of Highly Anisotropic Spatial Solitons and Modulational Instability in liquid crystals,” Nature 432, 733–737 (2004).
[Crossref] [PubMed]

C. Conti, M. Peccianti, and G. Assanto, “Observation of optical solitons in a highly nonlocal medium,” Phys. Rev. Lett. 92, 113902 (2004).
[Crossref] [PubMed]

B. Hessmo, P. Usachev, H. Heydari, and G. Björk, “Experimental demonstration of single photon nonlocality,” Phys. Rev. Lett. 92, 180401 (2004).
[Crossref] [PubMed]

2003 (1)

M. Peccianti, C. Conti, and G. Assanto, “Optical modulational instability in a nonlocal medium,” Phys. Rev. E 68, 025602 (2003).
[Crossref]

2002 (2)

M. Peccianti and G. Assanto, “Nematic liquid crystals: a suitable medium for self-confinement of coherent and incoherent light,” Phys. Rev. E 65, 035603 (2002).
[Crossref]

J. Wyller, W. Krolikowski, O. Bang, and J. J. Rasmussen, “Generic features of modulational instability in nonlocal Kerr media,” Phys. Rev. E 66, 066615 (2002).
[Crossref]

1998 (1)

1997 (1)

A. W. Snyder and D. J. Mitchell, “Accessible Solitons,” Science 276, 1538–1541 (1997).
[Crossref]

1995 (1)

A. A. Zozulya and D. Z. Anderson, “Propagation of an optical beam in a photorefractive medium in the presence of a photogalvanic nonlinearity or an externally applied electric-field,” Phys. Rev. A 51, 1520–1531 (1995).
[Crossref] [PubMed]

1993 (1)

D. Suter and T. Blasberg, “Stabilization of transverse solitary waves by a nonlocal response of nonlinear medium,” Phys. Rev. A 48, 4583–4587 (1993).
[Crossref] [PubMed]

1986 (1)

N. V. Tabiryan, A. V. Sukhov, and B. Y Zel’dovich, “Orientational nonlinearity of liquid-crystals,” Mol. Cryst. Liq. Cryst. 136, 1–139 (1986).
[Crossref]

1971 (1)

R. A. Stern and J. F. Decker, “Nonlocal Instability of Finite-Amplitude Ion Waves,” Phys. Rev. Lett. 27, 1266–1271 (1971)
[Crossref]

1966 (1)

V. I. Bespalov and V. I. Talanov, “Filamentary structure of light beams in nonlinear liquids,” JETP Lett. 3, 307–310 (1966).

1965 (1)

J. P. Gordon, R. C. Leite, R. S. Moore, and J. R. Whinnery, “Long-Transient Effects in Lasers with Inserted Liquid Samples,” J. Appl. Phys. 36, 3–8 (1965).
[Crossref]

Alberici, E.

M. Peccianti, C. Conti, E. Alberici, and G. Assanto, “Spatially incoherent modulational instability in a non local medium,” Laser Phys. Lett. 2, 25–29 (2005).
[Crossref]

Anderson, D. Z.

A. A. Zozulya and D. Z. Anderson, “Propagation of an optical beam in a photorefractive medium in the presence of a photogalvanic nonlinearity or an externally applied electric-field,” Phys. Rev. A 51, 1520–1531 (1995).
[Crossref] [PubMed]

Assanto, G.

M. Peccianti, C. Conti, E. Alberici, and G. Assanto, “Spatially incoherent modulational instability in a non local medium,” Laser Phys. Lett. 2, 25–29 (2005).
[Crossref]

M. Peccianti, C. Conti, and G. Assanto, “Interplay between nonlocality and nonlinearity in nematic liquid crystals,” Opt. Lett. 30, 415–417 (2005).
[Crossref] [PubMed]

M. Peccianti, C. Conti, G. Assanto, A. De Luca, and C. Umeton, “Routing of Highly Anisotropic Spatial Solitons and Modulational Instability in liquid crystals,” Nature 432, 733–737 (2004).
[Crossref] [PubMed]

C. Conti, M. Peccianti, and G. Assanto, “Observation of optical solitons in a highly nonlocal medium,” Phys. Rev. Lett. 92, 113902 (2004).
[Crossref] [PubMed]

M. Peccianti, C. Conti, and G. Assanto, “Optical modulational instability in a nonlocal medium,” Phys. Rev. E 68, 025602 (2003).
[Crossref]

M. Peccianti and G. Assanto, “Nematic liquid crystals: a suitable medium for self-confinement of coherent and incoherent light,” Phys. Rev. E 65, 035603 (2002).
[Crossref]

Bang, O.

W. Królikowski, O. Bang, N. I. Nikolov, D. Neshev, J. Wyller, J. J. Rasmussen, and D. Edmundson, “Modulational instability, solitons and beam propagation in spatially nonlocal nonlinear media,” J. Opt. B 6, S288–S294 (2004).
[Crossref]

J. Wyller, W. Krolikowski, O. Bang, and J. J. Rasmussen, “Generic features of modulational instability in nonlocal Kerr media,” Phys. Rev. E 66, 066615 (2002).
[Crossref]

Bespalov, V. I.

V. I. Bespalov and V. I. Talanov, “Filamentary structure of light beams in nonlinear liquids,” JETP Lett. 3, 307–310 (1966).

Björk, G.

B. Hessmo, P. Usachev, H. Heydari, and G. Björk, “Experimental demonstration of single photon nonlocality,” Phys. Rev. Lett. 92, 180401 (2004).
[Crossref] [PubMed]

Blasberg, T.

D. Suter and T. Blasberg, “Stabilization of transverse solitary waves by a nonlocal response of nonlinear medium,” Phys. Rev. A 48, 4583–4587 (1993).
[Crossref] [PubMed]

Conti, C.

M. Peccianti, C. Conti, E. Alberici, and G. Assanto, “Spatially incoherent modulational instability in a non local medium,” Laser Phys. Lett. 2, 25–29 (2005).
[Crossref]

M. Peccianti, C. Conti, and G. Assanto, “Interplay between nonlocality and nonlinearity in nematic liquid crystals,” Opt. Lett. 30, 415–417 (2005).
[Crossref] [PubMed]

C. Conti, M. Peccianti, and G. Assanto, “Observation of optical solitons in a highly nonlocal medium,” Phys. Rev. Lett. 92, 113902 (2004).
[Crossref] [PubMed]

M. Peccianti, C. Conti, G. Assanto, A. De Luca, and C. Umeton, “Routing of Highly Anisotropic Spatial Solitons and Modulational Instability in liquid crystals,” Nature 432, 733–737 (2004).
[Crossref] [PubMed]

M. Peccianti, C. Conti, and G. Assanto, “Optical modulational instability in a nonlocal medium,” Phys. Rev. E 68, 025602 (2003).
[Crossref]

De Luca, A.

M. Peccianti, C. Conti, G. Assanto, A. De Luca, and C. Umeton, “Routing of Highly Anisotropic Spatial Solitons and Modulational Instability in liquid crystals,” Nature 432, 733–737 (2004).
[Crossref] [PubMed]

Decker, J. F.

R. A. Stern and J. F. Decker, “Nonlocal Instability of Finite-Amplitude Ion Waves,” Phys. Rev. Lett. 27, 1266–1271 (1971)
[Crossref]

Edmundson, D.

W. Królikowski, O. Bang, N. I. Nikolov, D. Neshev, J. Wyller, J. J. Rasmussen, and D. Edmundson, “Modulational instability, solitons and beam propagation in spatially nonlocal nonlinear media,” J. Opt. B 6, S288–S294 (2004).
[Crossref]

Gatz, S.

Gordon, J. P.

J. P. Gordon, R. C. Leite, R. S. Moore, and J. R. Whinnery, “Long-Transient Effects in Lasers with Inserted Liquid Samples,” J. Appl. Phys. 36, 3–8 (1965).
[Crossref]

Herrmann, J.

Hessmo, B.

B. Hessmo, P. Usachev, H. Heydari, and G. Björk, “Experimental demonstration of single photon nonlocality,” Phys. Rev. Lett. 92, 180401 (2004).
[Crossref] [PubMed]

Heydari, H.

B. Hessmo, P. Usachev, H. Heydari, and G. Björk, “Experimental demonstration of single photon nonlocality,” Phys. Rev. Lett. 92, 180401 (2004).
[Crossref] [PubMed]

Khoo, I. C.

I. C. Khoo, Liquid Crystals: Physical Properties and Nonlinear Optical Phenomena, (Wiley, New York, 1995).

Krolikowski, W.

J. Wyller, W. Krolikowski, O. Bang, and J. J. Rasmussen, “Generic features of modulational instability in nonlocal Kerr media,” Phys. Rev. E 66, 066615 (2002).
[Crossref]

Królikowski, W.

W. Królikowski, O. Bang, N. I. Nikolov, D. Neshev, J. Wyller, J. J. Rasmussen, and D. Edmundson, “Modulational instability, solitons and beam propagation in spatially nonlocal nonlinear media,” J. Opt. B 6, S288–S294 (2004).
[Crossref]

Leite, R. C.

J. P. Gordon, R. C. Leite, R. S. Moore, and J. R. Whinnery, “Long-Transient Effects in Lasers with Inserted Liquid Samples,” J. Appl. Phys. 36, 3–8 (1965).
[Crossref]

Mitchell, D. J.

A. W. Snyder and D. J. Mitchell, “Accessible Solitons,” Science 276, 1538–1541 (1997).
[Crossref]

Moore, R. S.

J. P. Gordon, R. C. Leite, R. S. Moore, and J. R. Whinnery, “Long-Transient Effects in Lasers with Inserted Liquid Samples,” J. Appl. Phys. 36, 3–8 (1965).
[Crossref]

Neshev, D.

W. Królikowski, O. Bang, N. I. Nikolov, D. Neshev, J. Wyller, J. J. Rasmussen, and D. Edmundson, “Modulational instability, solitons and beam propagation in spatially nonlocal nonlinear media,” J. Opt. B 6, S288–S294 (2004).
[Crossref]

Nikolov, N. I.

W. Królikowski, O. Bang, N. I. Nikolov, D. Neshev, J. Wyller, J. J. Rasmussen, and D. Edmundson, “Modulational instability, solitons and beam propagation in spatially nonlocal nonlinear media,” J. Opt. B 6, S288–S294 (2004).
[Crossref]

Peccianti, M.

M. Peccianti, C. Conti, and G. Assanto, “Interplay between nonlocality and nonlinearity in nematic liquid crystals,” Opt. Lett. 30, 415–417 (2005).
[Crossref] [PubMed]

M. Peccianti, C. Conti, E. Alberici, and G. Assanto, “Spatially incoherent modulational instability in a non local medium,” Laser Phys. Lett. 2, 25–29 (2005).
[Crossref]

C. Conti, M. Peccianti, and G. Assanto, “Observation of optical solitons in a highly nonlocal medium,” Phys. Rev. Lett. 92, 113902 (2004).
[Crossref] [PubMed]

M. Peccianti, C. Conti, G. Assanto, A. De Luca, and C. Umeton, “Routing of Highly Anisotropic Spatial Solitons and Modulational Instability in liquid crystals,” Nature 432, 733–737 (2004).
[Crossref] [PubMed]

M. Peccianti, C. Conti, and G. Assanto, “Optical modulational instability in a nonlocal medium,” Phys. Rev. E 68, 025602 (2003).
[Crossref]

M. Peccianti and G. Assanto, “Nematic liquid crystals: a suitable medium for self-confinement of coherent and incoherent light,” Phys. Rev. E 65, 035603 (2002).
[Crossref]

Rasmussen, J. J.

W. Królikowski, O. Bang, N. I. Nikolov, D. Neshev, J. Wyller, J. J. Rasmussen, and D. Edmundson, “Modulational instability, solitons and beam propagation in spatially nonlocal nonlinear media,” J. Opt. B 6, S288–S294 (2004).
[Crossref]

J. Wyller, W. Krolikowski, O. Bang, and J. J. Rasmussen, “Generic features of modulational instability in nonlocal Kerr media,” Phys. Rev. E 66, 066615 (2002).
[Crossref]

Sakurai, J. J.

J. J. Sakurai, “Modern Quantum Mechanics” (Addison-Wesley, Reading, MA, 1994).

Snyder, A. W.

A. W. Snyder and D. J. Mitchell, “Accessible Solitons,” Science 276, 1538–1541 (1997).
[Crossref]

Stegeman, G. I.

G. I. Stegeman, “Spatial Beam Instabilities Due to Instantaneous Nonlinear Mechanisms,” Proc. NATO ASI/SUSSP56 on “Ultrafast Photonics,” Ed. A. Miller (Inst. Physics Publishing, London, 2003).

Stern, R. A.

R. A. Stern and J. F. Decker, “Nonlocal Instability of Finite-Amplitude Ion Waves,” Phys. Rev. Lett. 27, 1266–1271 (1971)
[Crossref]

Sukhov, A. V.

N. V. Tabiryan, A. V. Sukhov, and B. Y Zel’dovich, “Orientational nonlinearity of liquid-crystals,” Mol. Cryst. Liq. Cryst. 136, 1–139 (1986).
[Crossref]

Suter, D.

D. Suter and T. Blasberg, “Stabilization of transverse solitary waves by a nonlocal response of nonlinear medium,” Phys. Rev. A 48, 4583–4587 (1993).
[Crossref] [PubMed]

Tabiryan, N. V.

N. V. Tabiryan, A. V. Sukhov, and B. Y Zel’dovich, “Orientational nonlinearity of liquid-crystals,” Mol. Cryst. Liq. Cryst. 136, 1–139 (1986).
[Crossref]

Talanov, V. I.

V. I. Bespalov and V. I. Talanov, “Filamentary structure of light beams in nonlinear liquids,” JETP Lett. 3, 307–310 (1966).

Umeton, C.

M. Peccianti, C. Conti, G. Assanto, A. De Luca, and C. Umeton, “Routing of Highly Anisotropic Spatial Solitons and Modulational Instability in liquid crystals,” Nature 432, 733–737 (2004).
[Crossref] [PubMed]

Usachev, P.

B. Hessmo, P. Usachev, H. Heydari, and G. Björk, “Experimental demonstration of single photon nonlocality,” Phys. Rev. Lett. 92, 180401 (2004).
[Crossref] [PubMed]

Whinnery, J. R.

J. P. Gordon, R. C. Leite, R. S. Moore, and J. R. Whinnery, “Long-Transient Effects in Lasers with Inserted Liquid Samples,” J. Appl. Phys. 36, 3–8 (1965).
[Crossref]

Wyller, J.

W. Królikowski, O. Bang, N. I. Nikolov, D. Neshev, J. Wyller, J. J. Rasmussen, and D. Edmundson, “Modulational instability, solitons and beam propagation in spatially nonlocal nonlinear media,” J. Opt. B 6, S288–S294 (2004).
[Crossref]

J. Wyller, W. Krolikowski, O. Bang, and J. J. Rasmussen, “Generic features of modulational instability in nonlocal Kerr media,” Phys. Rev. E 66, 066615 (2002).
[Crossref]

Zel’dovich, B. Y

N. V. Tabiryan, A. V. Sukhov, and B. Y Zel’dovich, “Orientational nonlinearity of liquid-crystals,” Mol. Cryst. Liq. Cryst. 136, 1–139 (1986).
[Crossref]

Zozulya, A. A.

A. A. Zozulya and D. Z. Anderson, “Propagation of an optical beam in a photorefractive medium in the presence of a photogalvanic nonlinearity or an externally applied electric-field,” Phys. Rev. A 51, 1520–1531 (1995).
[Crossref] [PubMed]

J. Appl. Phys. (1)

J. P. Gordon, R. C. Leite, R. S. Moore, and J. R. Whinnery, “Long-Transient Effects in Lasers with Inserted Liquid Samples,” J. Appl. Phys. 36, 3–8 (1965).
[Crossref]

J. Opt. B (1)

W. Królikowski, O. Bang, N. I. Nikolov, D. Neshev, J. Wyller, J. J. Rasmussen, and D. Edmundson, “Modulational instability, solitons and beam propagation in spatially nonlocal nonlinear media,” J. Opt. B 6, S288–S294 (2004).
[Crossref]

JETP Lett. (1)

V. I. Bespalov and V. I. Talanov, “Filamentary structure of light beams in nonlinear liquids,” JETP Lett. 3, 307–310 (1966).

Laser Phys. Lett. (1)

M. Peccianti, C. Conti, E. Alberici, and G. Assanto, “Spatially incoherent modulational instability in a non local medium,” Laser Phys. Lett. 2, 25–29 (2005).
[Crossref]

Mol. Cryst. Liq. Cryst. (1)

N. V. Tabiryan, A. V. Sukhov, and B. Y Zel’dovich, “Orientational nonlinearity of liquid-crystals,” Mol. Cryst. Liq. Cryst. 136, 1–139 (1986).
[Crossref]

Nature (1)

M. Peccianti, C. Conti, G. Assanto, A. De Luca, and C. Umeton, “Routing of Highly Anisotropic Spatial Solitons and Modulational Instability in liquid crystals,” Nature 432, 733–737 (2004).
[Crossref] [PubMed]

Opt. Lett. (2)

Phys. Rev. A (2)

D. Suter and T. Blasberg, “Stabilization of transverse solitary waves by a nonlocal response of nonlinear medium,” Phys. Rev. A 48, 4583–4587 (1993).
[Crossref] [PubMed]

A. A. Zozulya and D. Z. Anderson, “Propagation of an optical beam in a photorefractive medium in the presence of a photogalvanic nonlinearity or an externally applied electric-field,” Phys. Rev. A 51, 1520–1531 (1995).
[Crossref] [PubMed]

Phys. Rev. E (3)

J. Wyller, W. Krolikowski, O. Bang, and J. J. Rasmussen, “Generic features of modulational instability in nonlocal Kerr media,” Phys. Rev. E 66, 066615 (2002).
[Crossref]

M. Peccianti, C. Conti, and G. Assanto, “Optical modulational instability in a nonlocal medium,” Phys. Rev. E 68, 025602 (2003).
[Crossref]

M. Peccianti and G. Assanto, “Nematic liquid crystals: a suitable medium for self-confinement of coherent and incoherent light,” Phys. Rev. E 65, 035603 (2002).
[Crossref]

Phys. Rev. Lett. (3)

C. Conti, M. Peccianti, and G. Assanto, “Observation of optical solitons in a highly nonlocal medium,” Phys. Rev. Lett. 92, 113902 (2004).
[Crossref] [PubMed]

R. A. Stern and J. F. Decker, “Nonlocal Instability of Finite-Amplitude Ion Waves,” Phys. Rev. Lett. 27, 1266–1271 (1971)
[Crossref]

B. Hessmo, P. Usachev, H. Heydari, and G. Björk, “Experimental demonstration of single photon nonlocality,” Phys. Rev. Lett. 92, 180401 (2004).
[Crossref] [PubMed]

Science (1)

A. W. Snyder and D. J. Mitchell, “Accessible Solitons,” Science 276, 1538–1541 (1997).
[Crossref]

Other (3)

J. J. Sakurai, “Modern Quantum Mechanics” (Addison-Wesley, Reading, MA, 1994).

I. C. Khoo, Liquid Crystals: Physical Properties and Nonlinear Optical Phenomena, (Wiley, New York, 1995).

G. I. Stegeman, “Spatial Beam Instabilities Due to Instantaneous Nonlinear Mechanisms,” Proc. NATO ASI/SUSSP56 on “Ultrafast Photonics,” Ed. A. Miller (Inst. Physics Publishing, London, 2003).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Experimental geometry: a highly elliptical Gaussian beam (U>>V) is injected into a planar nematic liquid crystal cell with wavevector k normal to the input interface.

Fig. 2.
Fig. 2.

Transverse cutoff wavenumber versus angle θ0 between director n̂ and wavevector k̂.

Fig. 3.
Fig. 3.

Beam propagation in NLC at (a) 30, (b) 60 and (c) 90mW input powers, respectively. The pattern produced via modulational instability (a) eventually results into several solitons as the power increases (b). At higher excitations, adjacent solitons group owing to non locality and “global” self-focusing (c). In the photographs, birefringent walk-off is artificially compensated by rotating the camera axis by about 7°.

Fig. 4.
Fig. 4.

Transverse spectral gain, i. e. the transverse intensity spectrum versus z normalized to the input spectrum in z=0, for three different excitations: (a) P=30, (b) 60 and (c) 90mW, respectively.

Fig. 5.
Fig. 5.

Transverse intensity spectra in z=3.5mm for three input powers as in Fig. 4.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

K 2 Ψ A ( θ 0 ) Ψ + ε 0 Δ ε 4 sin [ 2 ( θ 0 δ ) ] E e 2 = 0
A ( θ 0 ) = K π 2 L 2 cos ( θ 0 ) ( sin ( 2 θ 0 ) 2 θ 0 cos ( 2 θ 0 ) )
Ψ ˜ = ε 0 Δ ε 4 sin [ 2 ( θ 0 δ ) ] K k y 2 + A ( θ 0 ) { E e 2 }

Metrics