Abstract

We present the application of wide-field time-resolved fluorescence imaging methods for the study of solvent interactions and mixing in microfluidic devices. Time-resolved imaging of fluorescence polarization anisotropy allows us to image the local viscosity of fluorescein in three dimensions in order to directly monitor solvent mixing within a microfluidic channel. This provides a viscosity image acquisition time of the order of minutes, and has been applied to a steady-state laminar flow configuration. To image dynamic fluid mixing in real-time, we demonstrate high-speed fluorescence lifetime imaging at 12.3 Hz applied to DASPI, which directly exhibits a solvent viscosity-dependant fluorescence lifetime. These two methods facilitate a high degree of quantification of microfluidic flow in 3-D and/or at high speed, providing a tool for studying fluid dynamics and for developing enhanced microfluidic assays.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. D. R. Reyes, D. Iossifidis, P. A. Auroux and A. Manz, "Micro total analysis systems. 1. Introduction, theory, and technology," Anal. Chem. 74, 2623-2636 (2002).
    [CrossRef] [PubMed]
  2. P. A. Auroux, D. Iossifidis, D. R. Reyes and A. Manz, "Micro total analysis systems. 2. Analytical standard operations and applications," Anal. Chem. 74, 2637-2652 (2002).
    [CrossRef] [PubMed]
  3. T. Vilkner, D. Janasek and A. Manz, "Micro total analysis systems. Recent developments," Anal. Chem. 76, 3373-3385 (2004).
    [CrossRef] [PubMed]
  4. E. Verpoorte, "Chip vision - optics for microchips," Lab Chip 3, 42N-52N (2003).
  5. A. E. Kamholz, B. H. Weigl, B. A. Finlayson and P. Yager, "Quantitative analysis of molecular interaction in a microfluidic channel: The T-sensor," Anal. Chem. 71, 5340-5347 (1999).
    [CrossRef] [PubMed]
  6. A. Hatch, A. E. Kamholz, K. R. Hawkins, M. S. Munson, E. A. Schilling, B. H. Weigl and P. Yager, "A rapid diffusion immunoassay in a T-sensor," Nat. Biotechnol. 19, 461-465 (2001).
    [CrossRef] [PubMed]
  7. D. Ross, M. Gaitan and L. E. Locascio, "Temperature measurement in microfluidic systems using a temperature-dependent fluorescent dye," Anal. Chem. 73, 4117-4123 (2001).
    [CrossRef] [PubMed]
  8. R. P. Hertzberg and A. J. Pope, "High-throughput screening: new technology for the 21st century," Curr. Opin. Chem. Biol. 4, 445-451 (2000).
    [CrossRef] [PubMed]
  9. K. Suhling, J. Siegel, P. M. P. Lanigan, S. Leveque-Fort, S. E. D. Webb, D. Phillips, D. M. Davis and P. M. W. French, "Time-resolved fluorescence anisotropy imaging applied to live cells," Opt. Lett. 29, 584-586 (2004).
    [CrossRef] [PubMed]
  10. A. H. A. Clayton, Q. S. Hanley, D. J. Arndt-Jovin, V. Subramaniam and T. M. Jovin, "Dynamic fluorescence anisotropy imaging microscopy in the frequency domain (rFLIM)," Biophys. J. 83, 1631-1649 (2002).
    [CrossRef] [PubMed]
  11. G. H. Patterson and D. W. Piston, "Photobleaching in two-photon excitation microscopy," Biophys. J. 78, 2159-2162 (2000).
    [CrossRef] [PubMed]
  12. J. Requejo-Isidro, J. McGinty, I. Munro, D. S. Elson, N. P. Galletly, M. J. Lever, M. A. A. Neil, G. W. H. Stamp, P. M. W. French, P. A. Kellett, J. D. Hares and A. K. L. Dymoke-Bradshaw, "High-speed widefield time-gated endoscopic fluorescence- lifetime imaging," Opt. Lett. 29, 2249-2251 (2004).
    [CrossRef] [PubMed]
  13. R. K. P. Benninger, B. Onfelt, M. A. A. Neil, D. M. Davis and P. M. W. French, "Fluorescence imaging of two-photon linear dichroism: Cholesterol depletion disrupts molecular orientation in cell membranes," Biophys. J. 88, 609-622 (2005).
    [CrossRef]
  14. J. Siegel, K. Suhling, S. Lévêque-Fort, S. E. D. Webb, D. M. Davis, D. Phillips, Y. Sabharwal and P. M. W. French, "Wide-field time-resolved fluorescence anisotropy imaging (TR- FAIM): Imaging the rotational mobility of a fluorophore," Rev. Sci. Instrum. 74, 182-192 (2003).
    [CrossRef]
  15. M. Tramier, K. Kemnitz, C. Durieux, J. Coppey, P. Denjean, R. B. Pansu and M. Coppey-moisan, "Restrained torsional dynamics of nuclear DNA in living proliferative mammalian cells," Biophys. J. 78, 2614-2627 (2000).
    [CrossRef] [PubMed]
  16. D. Axelrod, "Carbocyanine dye orientation in red cell membrane studied by microscopic fluorescence polarization," Biophys. J. 26, 557-573 (1979).
    [CrossRef] [PubMed]
  17. C. Z. Wan and C. K. Johnson, "Time-Resolved Anisotropic 2-Photon Spectroscopy," Chem. Phys. 179, 513-531 (1994).
    [CrossRef]
  18. A. V. Agronskaia, L. Tertoolen and H. C. Gerritsen, "High frame rate fluorescence lifetime imaging," J. Phys. D. 36, 1655-1662 (2003).
    [CrossRef]
  19. K. Dowling, M. J. Dayel, S. C. W. Hyde, P. M. W. French, M. J. Lever, J. D. Hares and A. K. L. Dymoke-Bradshaw, "High resolution time-domain fluorescence lifetime imaging for biomedical applications," J. Mod. Opt. 46, 199-209 (1999).
  20. J. R. Lakowicz, "Principles of Fluorescence Spectroscopy 2nd edition" (Kluwer Academic/Plenum Publishers: New York,1999).
  21. J. R. Taylor, M. C. Adams and W. Sibbett, "Investigation of viscosity dependent fluorescence lifetime using a synchronously operated picosecond streak camera," Appl. Phys. 21, 13-17 (1980).
    [CrossRef]
  22. M. J. Cole, J. Siegel, S. E. D. Webb, R. Jones, K. Dowling, P. M. W. French, M. J. Lever, L. O. D. Sucharov, M. A. A. Neil, R. Juskaitis and T. Wilson, "Whole-field optically sectioned fluorescence lifetime imaging," Opt. Lett. 25, 1361-1363 (2000).
    [CrossRef]
  23. D. Grant, E. Auksorius, D. N. Schimpf, P. M. P. Lanigan, P. A. A. De Beule, J. McGinty, D. S. Elson, C. Dunsby, J. Requejo-Isidro, I. Munro, N. Galletly, G. W. H. Stamp, P. Courtney, M. A. A. Neil and P. M. W. French, "An Electronically Tuneable Ultrafast Laser Source applied to Fluorescence Imaging including Wide-Field Optically-Sectioned Fluoescence Lifetime Imaging using a Nipkow Disk Microscope" presented at Focus on Microscopy, Jena, Germany, 20-23 March, 2005.
  24. K. Dowling, S. C. W. Hyde, J. C. Dainty, P. M. W. French and J. D. Hares, "2-D fluorescence lifetime imaging using a time-gated image intensifier," Opt. Commun. 135, 27-31 (1997).
    [CrossRef]
  25. D. S. Elson, I. Munro, J. Requejo-Isidro, J. McGinty, C. Dunsby, N. Galletly, G. W. Stamp, M. A. A. Neil, M. J. Lever, P. A. Kellett, A. Dymoke-Bradshaw, J. Hares and P. M. W. French, "Real-time time-domain fluorescence lifetime imaging including single-shot acquisition with a segmented optical image intensifier," New J. Phys. 6, art. no.-180 (2004).
    [CrossRef]

Anal. Chem.

D. R. Reyes, D. Iossifidis, P. A. Auroux and A. Manz, "Micro total analysis systems. 1. Introduction, theory, and technology," Anal. Chem. 74, 2623-2636 (2002).
[CrossRef] [PubMed]

P. A. Auroux, D. Iossifidis, D. R. Reyes and A. Manz, "Micro total analysis systems. 2. Analytical standard operations and applications," Anal. Chem. 74, 2637-2652 (2002).
[CrossRef] [PubMed]

T. Vilkner, D. Janasek and A. Manz, "Micro total analysis systems. Recent developments," Anal. Chem. 76, 3373-3385 (2004).
[CrossRef] [PubMed]

A. E. Kamholz, B. H. Weigl, B. A. Finlayson and P. Yager, "Quantitative analysis of molecular interaction in a microfluidic channel: The T-sensor," Anal. Chem. 71, 5340-5347 (1999).
[CrossRef] [PubMed]

D. Ross, M. Gaitan and L. E. Locascio, "Temperature measurement in microfluidic systems using a temperature-dependent fluorescent dye," Anal. Chem. 73, 4117-4123 (2001).
[CrossRef] [PubMed]

Appl. Phys.

J. R. Taylor, M. C. Adams and W. Sibbett, "Investigation of viscosity dependent fluorescence lifetime using a synchronously operated picosecond streak camera," Appl. Phys. 21, 13-17 (1980).
[CrossRef]

Biophys. J.

A. H. A. Clayton, Q. S. Hanley, D. J. Arndt-Jovin, V. Subramaniam and T. M. Jovin, "Dynamic fluorescence anisotropy imaging microscopy in the frequency domain (rFLIM)," Biophys. J. 83, 1631-1649 (2002).
[CrossRef] [PubMed]

G. H. Patterson and D. W. Piston, "Photobleaching in two-photon excitation microscopy," Biophys. J. 78, 2159-2162 (2000).
[CrossRef] [PubMed]

M. Tramier, K. Kemnitz, C. Durieux, J. Coppey, P. Denjean, R. B. Pansu and M. Coppey-moisan, "Restrained torsional dynamics of nuclear DNA in living proliferative mammalian cells," Biophys. J. 78, 2614-2627 (2000).
[CrossRef] [PubMed]

D. Axelrod, "Carbocyanine dye orientation in red cell membrane studied by microscopic fluorescence polarization," Biophys. J. 26, 557-573 (1979).
[CrossRef] [PubMed]

R. K. P. Benninger, B. Onfelt, M. A. A. Neil, D. M. Davis and P. M. W. French, "Fluorescence imaging of two-photon linear dichroism: Cholesterol depletion disrupts molecular orientation in cell membranes," Biophys. J. 88, 609-622 (2005).
[CrossRef]

Chem. Phys.

C. Z. Wan and C. K. Johnson, "Time-Resolved Anisotropic 2-Photon Spectroscopy," Chem. Phys. 179, 513-531 (1994).
[CrossRef]

Curr. Opin. Chem. Biol.

R. P. Hertzberg and A. J. Pope, "High-throughput screening: new technology for the 21st century," Curr. Opin. Chem. Biol. 4, 445-451 (2000).
[CrossRef] [PubMed]

Focus on Microscopy, Germany 2005

D. Grant, E. Auksorius, D. N. Schimpf, P. M. P. Lanigan, P. A. A. De Beule, J. McGinty, D. S. Elson, C. Dunsby, J. Requejo-Isidro, I. Munro, N. Galletly, G. W. H. Stamp, P. Courtney, M. A. A. Neil and P. M. W. French, "An Electronically Tuneable Ultrafast Laser Source applied to Fluorescence Imaging including Wide-Field Optically-Sectioned Fluoescence Lifetime Imaging using a Nipkow Disk Microscope" presented at Focus on Microscopy, Jena, Germany, 20-23 March, 2005.

J. Mod. Opt.

K. Dowling, M. J. Dayel, S. C. W. Hyde, P. M. W. French, M. J. Lever, J. D. Hares and A. K. L. Dymoke-Bradshaw, "High resolution time-domain fluorescence lifetime imaging for biomedical applications," J. Mod. Opt. 46, 199-209 (1999).

J. Phys. D.

A. V. Agronskaia, L. Tertoolen and H. C. Gerritsen, "High frame rate fluorescence lifetime imaging," J. Phys. D. 36, 1655-1662 (2003).
[CrossRef]

Lab Chip

E. Verpoorte, "Chip vision - optics for microchips," Lab Chip 3, 42N-52N (2003).

Nat. Biotechnol.

A. Hatch, A. E. Kamholz, K. R. Hawkins, M. S. Munson, E. A. Schilling, B. H. Weigl and P. Yager, "A rapid diffusion immunoassay in a T-sensor," Nat. Biotechnol. 19, 461-465 (2001).
[CrossRef] [PubMed]

New J. Phys.

D. S. Elson, I. Munro, J. Requejo-Isidro, J. McGinty, C. Dunsby, N. Galletly, G. W. Stamp, M. A. A. Neil, M. J. Lever, P. A. Kellett, A. Dymoke-Bradshaw, J. Hares and P. M. W. French, "Real-time time-domain fluorescence lifetime imaging including single-shot acquisition with a segmented optical image intensifier," New J. Phys. 6, art. no.-180 (2004).
[CrossRef]

Opt. Commun.

K. Dowling, S. C. W. Hyde, J. C. Dainty, P. M. W. French and J. D. Hares, "2-D fluorescence lifetime imaging using a time-gated image intensifier," Opt. Commun. 135, 27-31 (1997).
[CrossRef]

Opt. Lett.

Rev. Sci. Instrum.

J. Siegel, K. Suhling, S. Lévêque-Fort, S. E. D. Webb, D. M. Davis, D. Phillips, Y. Sabharwal and P. M. W. French, "Wide-field time-resolved fluorescence anisotropy imaging (TR- FAIM): Imaging the rotational mobility of a fluorophore," Rev. Sci. Instrum. 74, 182-192 (2003).
[CrossRef]

Other

J. R. Lakowicz, "Principles of Fluorescence Spectroscopy 2nd edition" (Kluwer Academic/Plenum Publishers: New York,1999).

Supplementary Material (2)

» Media 1: AVI (3420 KB)     
» Media 2: AVI (3419 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Schematic of rFLIM setup

Fig. 2.
Fig. 2.

Schematic of high speed FLIM setup

Fig. 3.
Fig. 3.

(a) Channel schematic, (b) image of correlation time at junction and (c) Sample data points with fit

Fig. 4.
Fig. 4.

(a) and (b) Images of correlation time at ~0.4cm downstream of the point of confluence at 10 and 1 μl/min flow rate respectively. (c) Comparison of viscosity profiles across channel for the different flow rates.

Fig. 5.
Fig. 5.

Rendered 3D viscosity profile of flow interface, viewed from above.

Fig. 6.
Fig. 6.

Comparison of (a) rotational correlation time images, (b) fluorescence lifetime images and (c) profiles across the channel.

Fig. 7.
Fig. 7.

(3.33MB) Movie of fluorescence lifetime at point of confluence, with color scale attached. Flows were applied through the two side inlets while the center inlet was unused.

Fig. 8.
Fig. 8.

(3.33MB) Movie of fluorescence lifetime at channel 5cm from mixing point as flow is decreased from 10 to 0 μl/min. Color scale as in fig. 7.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

r ( t ) = I ( t ) G I ( t ) [ I ( t ) + 2 G I ( t ) ]
G = ( I VV I VH I HV I HH ) 1 2
I = K a I x + K b I y + K c I z I = K a I x + K b I z + K c I y
r ( t ) = r 0 exp ( t θ )
θ = V η 3 kT
τ RLD = Δ t ln ( I 1 I 2 )
F ( t ) = I ( t ) + 2 G I ( t )

Metrics