Abstract

A comparison between composite crystalline and ceramic composite Nd:YAG rods for high power diode end-pumping is presented. Laser output power characteristics as well as the thermal lensing properties of the composite laser rods were evaluated. A maximum laser output power of 121 W and an optical-to-optical efficiency of 48 % were achieved by longitudinal pumping with fiber-coupled laser diodes.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. L. Jianren, T. Murai, K. Takaichi, T. Uematsu, K. Misawa, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, and A. Kudryashov, "72 W Nd:YAl5O12 ceramic laser," Appl. Phys. Lett. 78, 3586 (2001).
    [CrossRef]
  2. L. Jianren, M. Prabhu, X. Jianqiu, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, "Highly efficient 2% Nd:yttrium aluminum garnet ceramic laser," Appl. Phys. Lett. 77, 3707 (2000).
    [CrossRef]
  3. C. Bibeau, R. J. Beach, S. C. Mitchell, M. A. Emanuel, J. Skidmore, C. A. Ebbers, S. B. Sutton, and K. S. Jancaitis., "High-Average-Power 1 µm Performance and Frequency Conversion of a Diode-End-Pumped Yb:YAG Laser." IEEE J. Quantum Electron. 34, 2010 (1998).
    [CrossRef]
  4. E. Honea, R. J. Beach, S. C. Mitchell, J. Skidmore, M. A. Emanuel, S. B. Sutton, S. A. Payne, P. V. Avizonis, R. S. Monroe and D. G. Harris, "High-power dual-rod Yb:YAG laser." Opt. Lett. 25, 805 (2000).
    [CrossRef]
  5. M. Frede, R. Wilhelm, R. Gau, M. Brendel, I. Zawischa, C. Fallnich, F. Seifert and B. Willke, "High-power single-frequency Nd:YAG laser for gravitational wave detection", Class. Quantum Gravity. 21, 895 (2004).
    [CrossRef]
  6. M. Frede, R. Wilhelm, M. Brendel, C. Fallnich, F. Seifert, B. Willke, K. Danzmann, "High power fundamental mode Nd:YAG laser with efficient birefringence compensation," Opt. Express 12, 3581 (2004)
    [CrossRef] [PubMed]
  7. W. W. Rigrod, �??Saturation Effects in High-Gain Lasers,�?? J. App. Phys. 36, 2487 (1965).
    [CrossRef]
  8. W. W. Rigrod, �??Homogeneously broadened cw lasers with uniform distributed loss,�?? IEEE J. Quantum Electron. 14, 377 (1978).
    [CrossRef]
  9. D. Findlay and R. A. Clay, �??The measurement of internal losses in 4-level lasers,�?? Phys. Lett. 20, 277 (1966).
    [CrossRef]
  10. A. E. Siegman. "Lasers". Sausalito, California, University Science Books (1986).
  11. J. Song, A. P. Liu, K. Okino, and K. Ueda, �??Control of the thermal lensing effect with different pump light distributions,�?? Appl. Opt. 36, 8051-8055 (1997).
    [CrossRef]
  12. Yung-Fu Chen, �??Pump-to-mode size ratio dependence of thermal loading in diode-end-pumped solid-state lasers,�?? J. Opt. Soc. Am. B 17, 1835 (2000).
    [CrossRef]
  13. D. Golla, S. Knoke, W. Schöne, G. Ernst, M. Bode, A. Tünnermann, and H. Welling, �??300W cw diode-laser side-pumped Nd:YAG rod laser,�?? Opt. Lett. 20, 1148 (1995).
    [CrossRef] [PubMed]
  14. D. Golla, S. Knoke, W. Schöne, A. Tünnermann, and H. Schmidt. �??High Power Continuous-Wave Diode-Laser-Pumped Nd:YAG Laser.�?? Appl. Phys. B 58, 389 (1994).
    [CrossRef]
  15. T. Brand, �??Compact 170W continuous-wave diode-pumped Nd:YAG rod laser with a cusp-shaped reflector,�?? Opt. Lett. 20, 1776 (1995).
    [CrossRef] [PubMed]

Appl. Opt.

Appl. Phys. B

D. Golla, S. Knoke, W. Schöne, A. Tünnermann, and H. Schmidt. �??High Power Continuous-Wave Diode-Laser-Pumped Nd:YAG Laser.�?? Appl. Phys. B 58, 389 (1994).
[CrossRef]

Appl. Phys. Lett.

L. Jianren, T. Murai, K. Takaichi, T. Uematsu, K. Misawa, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, and A. Kudryashov, "72 W Nd:YAl5O12 ceramic laser," Appl. Phys. Lett. 78, 3586 (2001).
[CrossRef]

L. Jianren, M. Prabhu, X. Jianqiu, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, "Highly efficient 2% Nd:yttrium aluminum garnet ceramic laser," Appl. Phys. Lett. 77, 3707 (2000).
[CrossRef]

Class. Quantum Gravity

M. Frede, R. Wilhelm, R. Gau, M. Brendel, I. Zawischa, C. Fallnich, F. Seifert and B. Willke, "High-power single-frequency Nd:YAG laser for gravitational wave detection", Class. Quantum Gravity. 21, 895 (2004).
[CrossRef]

IEEE J. Quantum Electron.

W. W. Rigrod, �??Homogeneously broadened cw lasers with uniform distributed loss,�?? IEEE J. Quantum Electron. 14, 377 (1978).
[CrossRef]

C. Bibeau, R. J. Beach, S. C. Mitchell, M. A. Emanuel, J. Skidmore, C. A. Ebbers, S. B. Sutton, and K. S. Jancaitis., "High-Average-Power 1 µm Performance and Frequency Conversion of a Diode-End-Pumped Yb:YAG Laser." IEEE J. Quantum Electron. 34, 2010 (1998).
[CrossRef]

J. App. Phys.

W. W. Rigrod, �??Saturation Effects in High-Gain Lasers,�?? J. App. Phys. 36, 2487 (1965).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Express

Opt. Lett.

Phys. Lett.

D. Findlay and R. A. Clay, �??The measurement of internal losses in 4-level lasers,�?? Phys. Lett. 20, 277 (1966).
[CrossRef]

Other

A. E. Siegman. "Lasers". Sausalito, California, University Science Books (1986).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic set-up of the laser system.

Fig. 2.
Fig. 2.

Laser output vs. diode pump power for the composite crystal (a) and the ceramic rod (b) for different output coupler transmissions of 10, 18 and 22 % measured with a 600 μm fiber bundle. Laser output vs. diode pump power for the composite crystal (c) and the ceramic rod (d) for different output coupler transmissions of 12, 18 and 25 % measured with the 800 μm fiber bundle.

Fig. 3.
Fig. 3.

Rigrod plot for different pump powers (a) and Findlay-Clay analysis for composite ceramic and crystalline laser rod (b).

Fig. 4.
Fig. 4.

Refractive power vs. pump power for or composite ceramic and crystalline laser rod (a) and refractive power vs. pump power for 600 μm and 800 μm pump fiber bundle (b).

Metrics