Abstract

Modal characteristics of hollow-core photonic-crystal fibers with elliptical veins are studied by use of a recently proposed numerical method. The dynamic behavior of bandgap guided modes, as the wavelength and aspect ratio are varied, is shown to include zero-crossings of the birefringence, polarization dependent radiation losses, and deformation of the fundamental mode.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. P. S. J. Russell, �??Photonic Crystal Fibers,�?? Science 299, 358�??362 (2003).
    [CrossRef] [PubMed]
  2. A. M. Zheltikov, �??Holey fibers,�?? Physics Uspekhi 170, 1203�??1215 (2000).
    [CrossRef]
  3. P. R. McIsaac, �??Symmetry-induced modal characteristics of uniform waveguides-I: Summary of results,�?? IEEE Trans. Microwave Theory and Techniques 23, 421�??429 (1975).
    [CrossRef]
  4. T. A. Birks, J. C. Knight, and P. S. J. Russell, �??Endlessly Single-mode Photonic Crystal Fiber,�?? Opt. Lett. 22, 961�??963 (1997).
    [CrossRef] [PubMed]
  5. C. J. S. de Matos and J. R. Taylor, �??Multi-kilowatt, all-fiber integrated chirped-pulse amplification system yielding 40�? pulse compression using air-core fiber and conventional erbium-doped fiber amplifier,�?? Opt. Express 12, 405�??409 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-3-405">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-3-405</a>
    [CrossRef] [PubMed]
  6. F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, �??Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,�?? Science 298, 399�??402 (2002).
    [CrossRef] [PubMed]
  7. J. Noda, K. Okamoto, and Y. Sasaki, �??Polarization-maintaining fibers and their applications,�?? J. Lightwave Technol. 4, 1071�??1089 (1986).
    [CrossRef]
  8. M. J. Steel and R. M. Osgood, �??Polarization and dispersive properties of elliptical-hole photonic crystal fibers,�?? J. Lightwave Technol. 19, 495�??503 (2001).
    [CrossRef]
  9. K. Saitoh and M. Koshiba, �??Photonic bandgap fibers with high birefringence,�?? IEEE Photonics Technol. Lett. 14, 1291�??1293 (2002).
    [CrossRef]
  10. S. Campbell, R. C. McPhedran, C. M. de Sterke, and L. C. Botten, �??Differential multipole method for microstructured optical fibers,�?? J. Opt. Soc. Am. B 21, 1919�??1928 (2004).
    [CrossRef]
  11. J. J. Hopfield and D. G. Thomas, �??Polariton absorption lines,�?? Phys. Rev. Lett. 15, 22�??25 (1965).
    [CrossRef]
  12. W. Zhi, R. Guobin, L. Shuqin, and J. Shuisheng, �??Dependence of mode characteristics on the central defect in elliptical hole photonic crystal fibers,�?? Opt. Express 11, 1966�??1979 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-17-1966">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-17-1966</a>
    [CrossRef] [PubMed]
  13. A. Hochman and Y. Leviatan, �??Analysis of strictly bound modes in photonic crystal fibers by use of a source-model technique,�?? J. Opt. Soc. Am. A 21, 1073�??1081 (2004).
    [CrossRef]
  14. A. Hochman and Y. Leviatan, �??Calculation of confinement losses in photonic crystal fibers by use of a sourcemodel technique,�?? J. Opt. Soc. Am. B 22, 474�??480 (2005).
    [CrossRef]
  15. N. A. Issa, M. A. Van-Eijkelenborg, M. Fellew, F. Cox, G. Henry, and M. C. J. Large, �??Fabrication and study of microstructured optical fibers with elliptical holes,�?? Opt. Lett. 29, 1336�??1338 (2004).
    [CrossRef] [PubMed]
  16. N. A. Issa and L. Poladian, �??Vector wave expansion method for leaky modes of microstructured optical fibers,�?? J. Lightwave Technol. 21, 1005�??1012 (2003).
    [CrossRef]
  17. W. Zhi, R. Guobin, and L. Shuqin, �??Mode disorder in elliptical hole PCFs,�?? Opt. Fiber Technol.: Materials 10, 124�??132 (2004).
    [CrossRef]
  18. A. A. Maradudin and A. R. McGurn, �??Out of plane propagation of electromagnetic waves in a two-dimensional periodic dielectric medium,�?? J. Modern Opt. 41, 275�??284 (1994).
    [CrossRef]
  19. J. M. Fini, �??Improved symmetry analysis of many-moded microstructure optical fibers,�?? J. Opt. Soc. Am. B 21, 1431�??1436 (2004).
    [CrossRef]
  20. R. Sammut and A. W. Snyder, �??Leaky modes on a dielectric waveguide: orthogonality and excitation,�?? Appl. Opt. 15, 1040�??1044 (1976).
    [CrossRef] [PubMed]
  21. C. H. Henry, �??Coupling of electromagnetic waves in CdS,�?? Phys. Rev. 143, 627�??633 (1966).
    [CrossRef]
  22. J. F. Lotspeich, �??Iso-Idex coupled-wave electrooptic filter,�?? IEEE J. Quantum Electron. 15, 904�??907 (1979).
    [CrossRef]

Appl. Opt.

IEEE J. Quantum Electron.

J. F. Lotspeich, �??Iso-Idex coupled-wave electrooptic filter,�?? IEEE J. Quantum Electron. 15, 904�??907 (1979).
[CrossRef]

IEEE Photonics Technol. Lett.

K. Saitoh and M. Koshiba, �??Photonic bandgap fibers with high birefringence,�?? IEEE Photonics Technol. Lett. 14, 1291�??1293 (2002).
[CrossRef]

IEEE Trans. Microwave Theory and Techniq

P. R. McIsaac, �??Symmetry-induced modal characteristics of uniform waveguides-I: Summary of results,�?? IEEE Trans. Microwave Theory and Techniques 23, 421�??429 (1975).
[CrossRef]

J. Lightwave Technol.

J. Modern Opt.

A. A. Maradudin and A. R. McGurn, �??Out of plane propagation of electromagnetic waves in a two-dimensional periodic dielectric medium,�?? J. Modern Opt. 41, 275�??284 (1994).
[CrossRef]

J. Opt. Soc. Am. A

J. Opt. Soc. Am. B

Opt. Express

Opt. Fiber Technol.: Materials

W. Zhi, R. Guobin, and L. Shuqin, �??Mode disorder in elliptical hole PCFs,�?? Opt. Fiber Technol.: Materials 10, 124�??132 (2004).
[CrossRef]

Opt. Lett.

Phys. Rev.

C. H. Henry, �??Coupling of electromagnetic waves in CdS,�?? Phys. Rev. 143, 627�??633 (1966).
[CrossRef]

Phys. Rev. Lett.

J. J. Hopfield and D. G. Thomas, �??Polariton absorption lines,�?? Phys. Rev. Lett. 15, 22�??25 (1965).
[CrossRef]

Physics Uspekhi

A. M. Zheltikov, �??Holey fibers,�?? Physics Uspekhi 170, 1203�??1215 (2000).
[CrossRef]

Science

P. S. J. Russell, �??Photonic Crystal Fibers,�?? Science 299, 358�??362 (2003).
[CrossRef] [PubMed]

F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, �??Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,�?? Science 298, 399�??402 (2002).
[CrossRef] [PubMed]

Supplementary Material (1)

» Media 1: AVI (668 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

(a) Solid-core EPCF. The horizontal axis of the ellipse is kept fixed at 2.5μm, and the refractive index of the gray areas is 1.45. The lattice constant is denoted by Λ. (b) Hollow-core EPCF. The horizontal axis of the veins is kept fixed at 0.35Λ, and the horizontal axis of the core is kept fixed 0.57Λ. The refractive index of the gray areas is 1.4897.

Fig. 2.
Fig. 2.

Bandgap for out-of-plane propagation shown shaded. The dispersion curve of the fundamental mode (black curve), and the light line (red horizontal line) are also indicated.

Fig. 3.
Fig. 3.

Complex effective indices of modes in the neighborhood of the light line, for decreasing aspect ratio, η. The ratio of lattice constant to wavelength, Λ/λ, is 1.7.

Fig. 4.
Fig. 4.

Deformation of the fundamental degenerate pair as the aspect ratio decreases. The p = 3 mode is shown in (a), (c), and (e) (AVI, 668KB); the p = 4 mode is shown in (b), (d), and (f) (AVI, 635KB). The value plotted is the intensity of light. The effective indices are: in (a) and (b), 0.9632–0.0075j, in (c) 0.9989–0.0078j, in (d) 1.0050–0.0179j, in (e) 1.0399–0.0095j, and in (f) 1.0618–0.0204j. [Media 1]

Fig. 5.
Fig. 5.

Complex effective indices of modes that correspond to the fundamental degenerate pair in the circular-veins PCF. The effective indices were tracked while the aspect ratio η was slowly decremented by 0.002 each time. The difference in η between two markers is 0.01. The dotted lines connect points of equal η.

Fig. 6.
Fig. 6.

Wavelength dependence of (a) Im(n eff), (c) Re(n eff) and (e) the birefringence, ∆n eff ≜ Re(neffp=4 - neffp=3). In (b), (d) and (f), corresponding results for a PCF with one more ring of veins are shown. The mode is the fundamental mode in the circular-veins PCF.

Tables (1)

Tables Icon

Table 1. Effective indices of the fundamental x-polarized mode of a solid-core PCF.

Metrics