Abstract

We report on pulse compression using a hollow-core photonic band-gap fiber filled with Xe. Output pulses with megawatt peak powers and durations of 50 fs have been generated from 120-fs input pulses. The large third-order dispersion inherent in these fibers degrades the optimal compression ratio and prevents generation of even shorter pulses. Nevertheless, for picosecond input pulses, compression to less than 100 fs is predicted.

© 2005 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Influence of air pressure on soliton formation in hollow-core photonic bandgap fibers

Jesper Lægsgaard and Peter John Roberts
J. Opt. Soc. Am. B 26(9) 1795-1800 (2009)

Theory of adiabatic pressure-gradient soliton compression in hollow-core photonic bandgap fibers

Jesper Lægsgaard and Peter John Roberts
Opt. Lett. 34(23) 3710-3712 (2009)

Combined soliton pulse compression and plasma-related frequency upconversion in gas-filled photonic crystal fiber

W. Chang, P. Hölzer, J. C. Travers, and P. St. J. Russell
Opt. Lett. 38(16) 2984-2987 (2013)

References

  • View by:
  • |
  • |
  • |

  1. R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. A. Allan, “Single-mode photonic band gap guidnce of light in air,” Science 285, 1537–1539 (1999).
    [Crossref] [PubMed]
  2. C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Muller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch,“Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424, 657–659 (2003).
    [Crossref] [PubMed]
  3. B. J. Mangan, L. Farr, A. Langford, P. J. Roberts, D. P. Williams, F. Couny, M. Lawman, M. Mason, S. Coupland, R. Flea, H. Sabert, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Low loss (1.7 dB/km) hollow core photonic bandgap fiber,” postdeadline paper PDP24, OFC’04 (Los Angeles, 2004).
  4. D. G. Ouzounov, F. R. Ahmad, D. Muller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301, 1702–1704 (2003).
    [Crossref] [PubMed]
  5. D. G. Ouzounov, C. J. Hensley, A. L. Gaeta, N. Venkataraman, M. T. Gallagher, and K. W. Koch, “The effective nonlinearity of hollow-core photonic band-gap fibers,” in preparation.
  6. F. Luan, J. C. Knight, P. St. J. Russell, S. Campbell, D. Xiao, D. T. Reid, B. J. Mangan, D. P. Williams, and P. J. Roberts,“ Femtosecond soliton pulse delivery at 800 nm wavelength in hollow-core photonic bandgap fibers,” Opt. Express 12, 835–840 (2004). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-5-835
    [Crossref] [PubMed]
  7. G. Humbert, J. C. Knight, G. Bouwmans, P. St. J. Russell, D. P. Williams, P. J. Roberts, and B. J. Mangan,“Hollow core photonic cryatal fibers for beam delivery,” Opt. Express 12, 1477–1484 (2004). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-8-1477
    [Crossref] [PubMed]
  8. F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298399–402 (2002)
    [Crossref] [PubMed]
  9. F. Benabid, G. Bouwmans, J. C. Knight, P. St. J. Russell, and F. Couny, “Ultrahigh efficiency laser wavelength conversion in a gas-filled hollow core photonic crystal fiber by pure stimulated rotational raman scattering in molecular hydrogen,” Phys. Rev. Lett. 93123903 (2004)
    [Crossref] [PubMed]
  10. S. O. Konorov, A. B. Fedotov, and A. M. Zheltikov, “Enhanced four-wave mixing in a hollow-core photonic-crystal fiber,” Opt. Lett. 281448 (2003).
    [Crossref] [PubMed]
  11. S. Ghosh, J. E. Sharping, D. G. Ouzounov, and A. L. Gaeta, “Coherent resonant interactions and slow light with molecules confined in photonic band-gap fiber,” Phys. Rev. Lett. 94, 093902 (2005).
    [Crossref] [PubMed]
  12. S. O. Konorov, A. M. Zheltikov, P. Zhou, A. P. Tarasevitch, and D. von der Linde ,“Self-channeling of subgigawatt femtosecond laser pulses in a groung-state waveguide induced in the hollow core of a photonic crystal fiber,” Opt. Lett. 291521 (2004).
    [Crossref] [PubMed]
  13. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, San Diego, ed. 3, 2001).
  14. L. F. Mollenauer, R. H. Stolen, J. P. Gordon, and W. J. Tomlinson, “Extreme picosecond pulse narrowing by means of soliton effect in single-mode optical fibers,” Opt. Lett. 8, 289–291 (1983).
    [Crossref] [PubMed]
  15. G. P. Agrawal, “Effect of intrapulse stimulated Raman scattering on soliton-effect pulse compression in optical fibers,” Opt. Lett. 15, 224–226 (1990).
    [Crossref] [PubMed]
  16. K. C. Chan and H. F. Liu, “Effect of third-order dispersion on soliton-effect pulse compression,” Opt. Lett. 19, 49–51 (1994).
    [Crossref] [PubMed]
  17. K. C. Chan and H. F. Liu, “Short Pulse Generation by Higher Order Soliton-Effect Comression: Effects of Optical Fiber Characteristics,” IEEE J. Quantum Electron. 31, 2226–2235 (1995).
    [Crossref]
  18. P. Beaud, W. Hodel, B. Zysset, and H. P. Weber, “Ultrashort pulse propagation, pulse breakup, and fundamental soliton formation in a single-mode optical fiber,” IEEE J. Quantum Electron. 23, 1938–1946 (1987).
    [Crossref]
  19. K. Chan and W. Cao, “Improved soliton-effect pulse compression by combained action of negative third-order dispersion and Raman self-scattering in optical fibers,” J. Opt. Soc. Am. B 15, 2371–2375 (1998).
    [Crossref]
  20. G. P. Agrawal, Applications of Nonlinear Fiber Optics (Academic Press, San Diego, 2001).
  21. M. Nisoli, S. De Silvestri, and O. Svelto, “Generation of high energy 10 fs pulses by a new pulse compression technique,” Appl. Phys. Lett. 68, 2793–2795 (1996).
    [Crossref]
  22. T. Sudmeyer, F. Brunner, E. Innerhofer, R. Paschotta, K. Furusawa, J. C. Baggett, T. M. Monro, D. J. Richardson, and U. Keller, “Nonlinear femtosecond pulse compression at high average power levels by use of a large-mode-area holey fiber,” Opt. Lett. 28, 1951–1953 (2003).
    [Crossref] [PubMed]
  23. T. Brabec and F. Krausz, “Nonlinear optical pulse propagation in the single-cycle regime,” Phys. Rev. Lett. 78, 3283 (1997).
    [Crossref]
  24. E. T. J. Nibbering, G. Grillon, M. A. Franco, B. S. Prade, and A. Mysyrowicz, “Determination of the inertial contribution to the nonlinear refracive index of air, N2 , and O2 by use of unfocused high-intensity femtosecond laser pulses,” J. Opt. Soc. Am. B 14, 650–660 (1997).
    [Crossref]

2005 (1)

S. Ghosh, J. E. Sharping, D. G. Ouzounov, and A. L. Gaeta, “Coherent resonant interactions and slow light with molecules confined in photonic band-gap fiber,” Phys. Rev. Lett. 94, 093902 (2005).
[Crossref] [PubMed]

2004 (4)

2003 (4)

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Muller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch,“Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424, 657–659 (2003).
[Crossref] [PubMed]

D. G. Ouzounov, F. R. Ahmad, D. Muller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301, 1702–1704 (2003).
[Crossref] [PubMed]

S. O. Konorov, A. B. Fedotov, and A. M. Zheltikov, “Enhanced four-wave mixing in a hollow-core photonic-crystal fiber,” Opt. Lett. 281448 (2003).
[Crossref] [PubMed]

T. Sudmeyer, F. Brunner, E. Innerhofer, R. Paschotta, K. Furusawa, J. C. Baggett, T. M. Monro, D. J. Richardson, and U. Keller, “Nonlinear femtosecond pulse compression at high average power levels by use of a large-mode-area holey fiber,” Opt. Lett. 28, 1951–1953 (2003).
[Crossref] [PubMed]

2002 (1)

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298399–402 (2002)
[Crossref] [PubMed]

1999 (1)

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. A. Allan, “Single-mode photonic band gap guidnce of light in air,” Science 285, 1537–1539 (1999).
[Crossref] [PubMed]

1998 (1)

1997 (2)

1996 (1)

M. Nisoli, S. De Silvestri, and O. Svelto, “Generation of high energy 10 fs pulses by a new pulse compression technique,” Appl. Phys. Lett. 68, 2793–2795 (1996).
[Crossref]

1995 (1)

K. C. Chan and H. F. Liu, “Short Pulse Generation by Higher Order Soliton-Effect Comression: Effects of Optical Fiber Characteristics,” IEEE J. Quantum Electron. 31, 2226–2235 (1995).
[Crossref]

1994 (1)

1990 (1)

1987 (1)

P. Beaud, W. Hodel, B. Zysset, and H. P. Weber, “Ultrashort pulse propagation, pulse breakup, and fundamental soliton formation in a single-mode optical fiber,” IEEE J. Quantum Electron. 23, 1938–1946 (1987).
[Crossref]

1983 (1)

Agrawal, G. P.

G. P. Agrawal, “Effect of intrapulse stimulated Raman scattering on soliton-effect pulse compression in optical fibers,” Opt. Lett. 15, 224–226 (1990).
[Crossref] [PubMed]

G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, San Diego, ed. 3, 2001).

G. P. Agrawal, Applications of Nonlinear Fiber Optics (Academic Press, San Diego, 2001).

Ahmad, F. R.

D. G. Ouzounov, F. R. Ahmad, D. Muller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301, 1702–1704 (2003).
[Crossref] [PubMed]

Allan, D. A.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. A. Allan, “Single-mode photonic band gap guidnce of light in air,” Science 285, 1537–1539 (1999).
[Crossref] [PubMed]

Allan, D. C.

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Muller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch,“Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424, 657–659 (2003).
[Crossref] [PubMed]

Antonopoulos, G.

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298399–402 (2002)
[Crossref] [PubMed]

Baggett, J. C.

Beaud, P.

P. Beaud, W. Hodel, B. Zysset, and H. P. Weber, “Ultrashort pulse propagation, pulse breakup, and fundamental soliton formation in a single-mode optical fiber,” IEEE J. Quantum Electron. 23, 1938–1946 (1987).
[Crossref]

Benabid, F.

F. Benabid, G. Bouwmans, J. C. Knight, P. St. J. Russell, and F. Couny, “Ultrahigh efficiency laser wavelength conversion in a gas-filled hollow core photonic crystal fiber by pure stimulated rotational raman scattering in molecular hydrogen,” Phys. Rev. Lett. 93123903 (2004)
[Crossref] [PubMed]

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298399–402 (2002)
[Crossref] [PubMed]

Birks, T. A.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. A. Allan, “Single-mode photonic band gap guidnce of light in air,” Science 285, 1537–1539 (1999).
[Crossref] [PubMed]

B. J. Mangan, L. Farr, A. Langford, P. J. Roberts, D. P. Williams, F. Couny, M. Lawman, M. Mason, S. Coupland, R. Flea, H. Sabert, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Low loss (1.7 dB/km) hollow core photonic bandgap fiber,” postdeadline paper PDP24, OFC’04 (Los Angeles, 2004).

Borrelli, N. F.

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Muller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch,“Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424, 657–659 (2003).
[Crossref] [PubMed]

Bouwmans, G.

F. Benabid, G. Bouwmans, J. C. Knight, P. St. J. Russell, and F. Couny, “Ultrahigh efficiency laser wavelength conversion in a gas-filled hollow core photonic crystal fiber by pure stimulated rotational raman scattering in molecular hydrogen,” Phys. Rev. Lett. 93123903 (2004)
[Crossref] [PubMed]

G. Humbert, J. C. Knight, G. Bouwmans, P. St. J. Russell, D. P. Williams, P. J. Roberts, and B. J. Mangan,“Hollow core photonic cryatal fibers for beam delivery,” Opt. Express 12, 1477–1484 (2004). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-8-1477
[Crossref] [PubMed]

Brabec, T.

T. Brabec and F. Krausz, “Nonlinear optical pulse propagation in the single-cycle regime,” Phys. Rev. Lett. 78, 3283 (1997).
[Crossref]

Brunner, F.

Campbell, S.

Cao, W.

Chan, K.

Chan, K. C.

K. C. Chan and H. F. Liu, “Short Pulse Generation by Higher Order Soliton-Effect Comression: Effects of Optical Fiber Characteristics,” IEEE J. Quantum Electron. 31, 2226–2235 (1995).
[Crossref]

K. C. Chan and H. F. Liu, “Effect of third-order dispersion on soliton-effect pulse compression,” Opt. Lett. 19, 49–51 (1994).
[Crossref] [PubMed]

Couny, F.

F. Benabid, G. Bouwmans, J. C. Knight, P. St. J. Russell, and F. Couny, “Ultrahigh efficiency laser wavelength conversion in a gas-filled hollow core photonic crystal fiber by pure stimulated rotational raman scattering in molecular hydrogen,” Phys. Rev. Lett. 93123903 (2004)
[Crossref] [PubMed]

B. J. Mangan, L. Farr, A. Langford, P. J. Roberts, D. P. Williams, F. Couny, M. Lawman, M. Mason, S. Coupland, R. Flea, H. Sabert, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Low loss (1.7 dB/km) hollow core photonic bandgap fiber,” postdeadline paper PDP24, OFC’04 (Los Angeles, 2004).

Coupland, S.

B. J. Mangan, L. Farr, A. Langford, P. J. Roberts, D. P. Williams, F. Couny, M. Lawman, M. Mason, S. Coupland, R. Flea, H. Sabert, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Low loss (1.7 dB/km) hollow core photonic bandgap fiber,” postdeadline paper PDP24, OFC’04 (Los Angeles, 2004).

Cregan, R. F.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. A. Allan, “Single-mode photonic band gap guidnce of light in air,” Science 285, 1537–1539 (1999).
[Crossref] [PubMed]

De Silvestri, S.

M. Nisoli, S. De Silvestri, and O. Svelto, “Generation of high energy 10 fs pulses by a new pulse compression technique,” Appl. Phys. Lett. 68, 2793–2795 (1996).
[Crossref]

der Linde, D. von

Farr, L.

B. J. Mangan, L. Farr, A. Langford, P. J. Roberts, D. P. Williams, F. Couny, M. Lawman, M. Mason, S. Coupland, R. Flea, H. Sabert, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Low loss (1.7 dB/km) hollow core photonic bandgap fiber,” postdeadline paper PDP24, OFC’04 (Los Angeles, 2004).

Fedotov, A. B.

Flea, R.

B. J. Mangan, L. Farr, A. Langford, P. J. Roberts, D. P. Williams, F. Couny, M. Lawman, M. Mason, S. Coupland, R. Flea, H. Sabert, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Low loss (1.7 dB/km) hollow core photonic bandgap fiber,” postdeadline paper PDP24, OFC’04 (Los Angeles, 2004).

Franco, M. A.

Furusawa, K.

Gaeta, A. L.

S. Ghosh, J. E. Sharping, D. G. Ouzounov, and A. L. Gaeta, “Coherent resonant interactions and slow light with molecules confined in photonic band-gap fiber,” Phys. Rev. Lett. 94, 093902 (2005).
[Crossref] [PubMed]

D. G. Ouzounov, F. R. Ahmad, D. Muller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301, 1702–1704 (2003).
[Crossref] [PubMed]

D. G. Ouzounov, C. J. Hensley, A. L. Gaeta, N. Venkataraman, M. T. Gallagher, and K. W. Koch, “The effective nonlinearity of hollow-core photonic band-gap fibers,” in preparation.

Gallagher, M. T.

D. G. Ouzounov, F. R. Ahmad, D. Muller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301, 1702–1704 (2003).
[Crossref] [PubMed]

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Muller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch,“Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424, 657–659 (2003).
[Crossref] [PubMed]

D. G. Ouzounov, C. J. Hensley, A. L. Gaeta, N. Venkataraman, M. T. Gallagher, and K. W. Koch, “The effective nonlinearity of hollow-core photonic band-gap fibers,” in preparation.

Ghosh, S.

S. Ghosh, J. E. Sharping, D. G. Ouzounov, and A. L. Gaeta, “Coherent resonant interactions and slow light with molecules confined in photonic band-gap fiber,” Phys. Rev. Lett. 94, 093902 (2005).
[Crossref] [PubMed]

Gordon, J. P.

Grillon, G.

Hensley, C. J.

D. G. Ouzounov, C. J. Hensley, A. L. Gaeta, N. Venkataraman, M. T. Gallagher, and K. W. Koch, “The effective nonlinearity of hollow-core photonic band-gap fibers,” in preparation.

Hodel, W.

P. Beaud, W. Hodel, B. Zysset, and H. P. Weber, “Ultrashort pulse propagation, pulse breakup, and fundamental soliton formation in a single-mode optical fiber,” IEEE J. Quantum Electron. 23, 1938–1946 (1987).
[Crossref]

Humbert, G.

Innerhofer, E.

Keller, U.

Knight, J. C.

G. Humbert, J. C. Knight, G. Bouwmans, P. St. J. Russell, D. P. Williams, P. J. Roberts, and B. J. Mangan,“Hollow core photonic cryatal fibers for beam delivery,” Opt. Express 12, 1477–1484 (2004). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-8-1477
[Crossref] [PubMed]

F. Luan, J. C. Knight, P. St. J. Russell, S. Campbell, D. Xiao, D. T. Reid, B. J. Mangan, D. P. Williams, and P. J. Roberts,“ Femtosecond soliton pulse delivery at 800 nm wavelength in hollow-core photonic bandgap fibers,” Opt. Express 12, 835–840 (2004). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-5-835
[Crossref] [PubMed]

F. Benabid, G. Bouwmans, J. C. Knight, P. St. J. Russell, and F. Couny, “Ultrahigh efficiency laser wavelength conversion in a gas-filled hollow core photonic crystal fiber by pure stimulated rotational raman scattering in molecular hydrogen,” Phys. Rev. Lett. 93123903 (2004)
[Crossref] [PubMed]

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298399–402 (2002)
[Crossref] [PubMed]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. A. Allan, “Single-mode photonic band gap guidnce of light in air,” Science 285, 1537–1539 (1999).
[Crossref] [PubMed]

B. J. Mangan, L. Farr, A. Langford, P. J. Roberts, D. P. Williams, F. Couny, M. Lawman, M. Mason, S. Coupland, R. Flea, H. Sabert, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Low loss (1.7 dB/km) hollow core photonic bandgap fiber,” postdeadline paper PDP24, OFC’04 (Los Angeles, 2004).

Koch, K. W.

D. G. Ouzounov, F. R. Ahmad, D. Muller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301, 1702–1704 (2003).
[Crossref] [PubMed]

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Muller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch,“Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424, 657–659 (2003).
[Crossref] [PubMed]

D. G. Ouzounov, C. J. Hensley, A. L. Gaeta, N. Venkataraman, M. T. Gallagher, and K. W. Koch, “The effective nonlinearity of hollow-core photonic band-gap fibers,” in preparation.

Konorov, S. O.

Krausz, F.

T. Brabec and F. Krausz, “Nonlinear optical pulse propagation in the single-cycle regime,” Phys. Rev. Lett. 78, 3283 (1997).
[Crossref]

Langford, A.

B. J. Mangan, L. Farr, A. Langford, P. J. Roberts, D. P. Williams, F. Couny, M. Lawman, M. Mason, S. Coupland, R. Flea, H. Sabert, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Low loss (1.7 dB/km) hollow core photonic bandgap fiber,” postdeadline paper PDP24, OFC’04 (Los Angeles, 2004).

Lawman, M.

B. J. Mangan, L. Farr, A. Langford, P. J. Roberts, D. P. Williams, F. Couny, M. Lawman, M. Mason, S. Coupland, R. Flea, H. Sabert, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Low loss (1.7 dB/km) hollow core photonic bandgap fiber,” postdeadline paper PDP24, OFC’04 (Los Angeles, 2004).

Liu, H. F.

K. C. Chan and H. F. Liu, “Short Pulse Generation by Higher Order Soliton-Effect Comression: Effects of Optical Fiber Characteristics,” IEEE J. Quantum Electron. 31, 2226–2235 (1995).
[Crossref]

K. C. Chan and H. F. Liu, “Effect of third-order dispersion on soliton-effect pulse compression,” Opt. Lett. 19, 49–51 (1994).
[Crossref] [PubMed]

Luan, F.

Mangan, B. J.

F. Luan, J. C. Knight, P. St. J. Russell, S. Campbell, D. Xiao, D. T. Reid, B. J. Mangan, D. P. Williams, and P. J. Roberts,“ Femtosecond soliton pulse delivery at 800 nm wavelength in hollow-core photonic bandgap fibers,” Opt. Express 12, 835–840 (2004). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-5-835
[Crossref] [PubMed]

G. Humbert, J. C. Knight, G. Bouwmans, P. St. J. Russell, D. P. Williams, P. J. Roberts, and B. J. Mangan,“Hollow core photonic cryatal fibers for beam delivery,” Opt. Express 12, 1477–1484 (2004). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-8-1477
[Crossref] [PubMed]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. A. Allan, “Single-mode photonic band gap guidnce of light in air,” Science 285, 1537–1539 (1999).
[Crossref] [PubMed]

B. J. Mangan, L. Farr, A. Langford, P. J. Roberts, D. P. Williams, F. Couny, M. Lawman, M. Mason, S. Coupland, R. Flea, H. Sabert, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Low loss (1.7 dB/km) hollow core photonic bandgap fiber,” postdeadline paper PDP24, OFC’04 (Los Angeles, 2004).

Mason, M.

B. J. Mangan, L. Farr, A. Langford, P. J. Roberts, D. P. Williams, F. Couny, M. Lawman, M. Mason, S. Coupland, R. Flea, H. Sabert, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Low loss (1.7 dB/km) hollow core photonic bandgap fiber,” postdeadline paper PDP24, OFC’04 (Los Angeles, 2004).

Mollenauer, L. F.

Monro, T. M.

Muller, D.

D. G. Ouzounov, F. R. Ahmad, D. Muller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301, 1702–1704 (2003).
[Crossref] [PubMed]

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Muller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch,“Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424, 657–659 (2003).
[Crossref] [PubMed]

Mysyrowicz, A.

Nibbering, E. T. J.

Nisoli, M.

M. Nisoli, S. De Silvestri, and O. Svelto, “Generation of high energy 10 fs pulses by a new pulse compression technique,” Appl. Phys. Lett. 68, 2793–2795 (1996).
[Crossref]

Ouzounov, D. G.

S. Ghosh, J. E. Sharping, D. G. Ouzounov, and A. L. Gaeta, “Coherent resonant interactions and slow light with molecules confined in photonic band-gap fiber,” Phys. Rev. Lett. 94, 093902 (2005).
[Crossref] [PubMed]

D. G. Ouzounov, F. R. Ahmad, D. Muller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301, 1702–1704 (2003).
[Crossref] [PubMed]

D. G. Ouzounov, C. J. Hensley, A. L. Gaeta, N. Venkataraman, M. T. Gallagher, and K. W. Koch, “The effective nonlinearity of hollow-core photonic band-gap fibers,” in preparation.

Paschotta, R.

Prade, B. S.

Reid, D. T.

Richardson, D. J.

Roberts, P. J.

F. Luan, J. C. Knight, P. St. J. Russell, S. Campbell, D. Xiao, D. T. Reid, B. J. Mangan, D. P. Williams, and P. J. Roberts,“ Femtosecond soliton pulse delivery at 800 nm wavelength in hollow-core photonic bandgap fibers,” Opt. Express 12, 835–840 (2004). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-5-835
[Crossref] [PubMed]

G. Humbert, J. C. Knight, G. Bouwmans, P. St. J. Russell, D. P. Williams, P. J. Roberts, and B. J. Mangan,“Hollow core photonic cryatal fibers for beam delivery,” Opt. Express 12, 1477–1484 (2004). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-8-1477
[Crossref] [PubMed]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. A. Allan, “Single-mode photonic band gap guidnce of light in air,” Science 285, 1537–1539 (1999).
[Crossref] [PubMed]

B. J. Mangan, L. Farr, A. Langford, P. J. Roberts, D. P. Williams, F. Couny, M. Lawman, M. Mason, S. Coupland, R. Flea, H. Sabert, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Low loss (1.7 dB/km) hollow core photonic bandgap fiber,” postdeadline paper PDP24, OFC’04 (Los Angeles, 2004).

Russell, P. St. J.

F. Benabid, G. Bouwmans, J. C. Knight, P. St. J. Russell, and F. Couny, “Ultrahigh efficiency laser wavelength conversion in a gas-filled hollow core photonic crystal fiber by pure stimulated rotational raman scattering in molecular hydrogen,” Phys. Rev. Lett. 93123903 (2004)
[Crossref] [PubMed]

G. Humbert, J. C. Knight, G. Bouwmans, P. St. J. Russell, D. P. Williams, P. J. Roberts, and B. J. Mangan,“Hollow core photonic cryatal fibers for beam delivery,” Opt. Express 12, 1477–1484 (2004). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-8-1477
[Crossref] [PubMed]

F. Luan, J. C. Knight, P. St. J. Russell, S. Campbell, D. Xiao, D. T. Reid, B. J. Mangan, D. P. Williams, and P. J. Roberts,“ Femtosecond soliton pulse delivery at 800 nm wavelength in hollow-core photonic bandgap fibers,” Opt. Express 12, 835–840 (2004). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-5-835
[Crossref] [PubMed]

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298399–402 (2002)
[Crossref] [PubMed]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. A. Allan, “Single-mode photonic band gap guidnce of light in air,” Science 285, 1537–1539 (1999).
[Crossref] [PubMed]

B. J. Mangan, L. Farr, A. Langford, P. J. Roberts, D. P. Williams, F. Couny, M. Lawman, M. Mason, S. Coupland, R. Flea, H. Sabert, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Low loss (1.7 dB/km) hollow core photonic bandgap fiber,” postdeadline paper PDP24, OFC’04 (Los Angeles, 2004).

Sabert, H.

B. J. Mangan, L. Farr, A. Langford, P. J. Roberts, D. P. Williams, F. Couny, M. Lawman, M. Mason, S. Coupland, R. Flea, H. Sabert, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Low loss (1.7 dB/km) hollow core photonic bandgap fiber,” postdeadline paper PDP24, OFC’04 (Los Angeles, 2004).

Sharping, J. E.

S. Ghosh, J. E. Sharping, D. G. Ouzounov, and A. L. Gaeta, “Coherent resonant interactions and slow light with molecules confined in photonic band-gap fiber,” Phys. Rev. Lett. 94, 093902 (2005).
[Crossref] [PubMed]

Silcox, J.

D. G. Ouzounov, F. R. Ahmad, D. Muller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301, 1702–1704 (2003).
[Crossref] [PubMed]

Smith, C. M.

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Muller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch,“Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424, 657–659 (2003).
[Crossref] [PubMed]

Stolen, R. H.

Sudmeyer, T.

Svelto, O.

M. Nisoli, S. De Silvestri, and O. Svelto, “Generation of high energy 10 fs pulses by a new pulse compression technique,” Appl. Phys. Lett. 68, 2793–2795 (1996).
[Crossref]

Tarasevitch, A. P.

Thomas, M. G.

D. G. Ouzounov, F. R. Ahmad, D. Muller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301, 1702–1704 (2003).
[Crossref] [PubMed]

Tomlinson, W. J.

Venkataraman, N.

D. G. Ouzounov, F. R. Ahmad, D. Muller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301, 1702–1704 (2003).
[Crossref] [PubMed]

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Muller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch,“Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424, 657–659 (2003).
[Crossref] [PubMed]

D. G. Ouzounov, C. J. Hensley, A. L. Gaeta, N. Venkataraman, M. T. Gallagher, and K. W. Koch, “The effective nonlinearity of hollow-core photonic band-gap fibers,” in preparation.

Weber, H. P.

P. Beaud, W. Hodel, B. Zysset, and H. P. Weber, “Ultrashort pulse propagation, pulse breakup, and fundamental soliton formation in a single-mode optical fiber,” IEEE J. Quantum Electron. 23, 1938–1946 (1987).
[Crossref]

West, J. A.

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Muller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch,“Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424, 657–659 (2003).
[Crossref] [PubMed]

Williams, D. P.

Xiao, D.

Zheltikov, A. M.

Zhou, P.

Zysset, B.

P. Beaud, W. Hodel, B. Zysset, and H. P. Weber, “Ultrashort pulse propagation, pulse breakup, and fundamental soliton formation in a single-mode optical fiber,” IEEE J. Quantum Electron. 23, 1938–1946 (1987).
[Crossref]

Appl. Phys. Lett. (1)

M. Nisoli, S. De Silvestri, and O. Svelto, “Generation of high energy 10 fs pulses by a new pulse compression technique,” Appl. Phys. Lett. 68, 2793–2795 (1996).
[Crossref]

IEEE J. Quantum Electron. (2)

K. C. Chan and H. F. Liu, “Short Pulse Generation by Higher Order Soliton-Effect Comression: Effects of Optical Fiber Characteristics,” IEEE J. Quantum Electron. 31, 2226–2235 (1995).
[Crossref]

P. Beaud, W. Hodel, B. Zysset, and H. P. Weber, “Ultrashort pulse propagation, pulse breakup, and fundamental soliton formation in a single-mode optical fiber,” IEEE J. Quantum Electron. 23, 1938–1946 (1987).
[Crossref]

J. Opt. Soc. Am. B (2)

Nature (1)

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Muller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch,“Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424, 657–659 (2003).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Lett. (6)

Phys. Rev. Lett. (3)

T. Brabec and F. Krausz, “Nonlinear optical pulse propagation in the single-cycle regime,” Phys. Rev. Lett. 78, 3283 (1997).
[Crossref]

S. Ghosh, J. E. Sharping, D. G. Ouzounov, and A. L. Gaeta, “Coherent resonant interactions and slow light with molecules confined in photonic band-gap fiber,” Phys. Rev. Lett. 94, 093902 (2005).
[Crossref] [PubMed]

F. Benabid, G. Bouwmans, J. C. Knight, P. St. J. Russell, and F. Couny, “Ultrahigh efficiency laser wavelength conversion in a gas-filled hollow core photonic crystal fiber by pure stimulated rotational raman scattering in molecular hydrogen,” Phys. Rev. Lett. 93123903 (2004)
[Crossref] [PubMed]

Science (3)

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. A. Allan, “Single-mode photonic band gap guidnce of light in air,” Science 285, 1537–1539 (1999).
[Crossref] [PubMed]

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298399–402 (2002)
[Crossref] [PubMed]

D. G. Ouzounov, F. R. Ahmad, D. Muller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301, 1702–1704 (2003).
[Crossref] [PubMed]

Other (4)

D. G. Ouzounov, C. J. Hensley, A. L. Gaeta, N. Venkataraman, M. T. Gallagher, and K. W. Koch, “The effective nonlinearity of hollow-core photonic band-gap fibers,” in preparation.

B. J. Mangan, L. Farr, A. Langford, P. J. Roberts, D. P. Williams, F. Couny, M. Lawman, M. Mason, S. Coupland, R. Flea, H. Sabert, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Low loss (1.7 dB/km) hollow core photonic bandgap fiber,” postdeadline paper PDP24, OFC’04 (Los Angeles, 2004).

G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, San Diego, ed. 3, 2001).

G. P. Agrawal, Applications of Nonlinear Fiber Optics (Academic Press, San Diego, 2001).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

The experimental setup.

Fig. 2.
Fig. 2.

(a) Measured autocorrelation traces as functions of pulse energy for a gas pressure of 4.5 atm, and (b) the autocorrelation width as a function of pulse energy.

Fig. 3.
Fig. 3.

Input (blue line) and output (red line) autocorrelation traces (a) and (c), and spectra (b) and (d) for a pulse energy of 225 nJ at gas pressure of 4.5 atm and for a pulse energy of 315 nJ at 9 atm, respectively.

Fig. 4.
Fig. 4.

Calculated (blue line) and measured (red line) autocorrelation (a) and spectrum (b) for a pulse with an energy of 225 nJ and for a gas pressure of 4.5 atm in the fiber. The black line in (b) is spectral attenuation of the fiber. The rise of the experimental spectrum at 1700 nm is a feature of the background level of the spectrometer.

Fig. 5.
Fig. 5.

Calculated output pulse intensity when only second-order dispersion is considered (red line) and when third-order dispersion is included (blue line).

Fig. 6.
Fig. 6.

Calculated autocorrelation for an input pulse (blue) with temporal duration of 1 ps and pulse energy of 210 nJ and the calculated output pulse autocorrelation (red) after propagation over 6 meters of this fiber.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

u ξ = n = 2 4 ( i ) n 1 L ds n ! L ds ( n ) n u τ n + i ( 1 + i ω 0 τ p τ ) p nl ,

Metrics