Abstract

We report on pulse compression using a hollow-core photonic band-gap fiber filled with Xe. Output pulses with megawatt peak powers and durations of 50 fs have been generated from 120-fs input pulses. The large third-order dispersion inherent in these fibers degrades the optimal compression ratio and prevents generation of even shorter pulses. Nevertheless, for picosecond input pulses, compression to less than 100 fs is predicted.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. A. Allan, �??Single-mode photonic band gap guidnce of light in air,�?? Science 285, 1537�??1539 (1999).
    [CrossRef] [PubMed]
  2. C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Muller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch,�??Low-loss hollow-core silica/air photonic bandgap fibre,�?? Nature 424, 657�??659 (2003)
    [CrossRef] [PubMed]
  3. B. J. Mangan, L. Farr, A. Langford, P. J. Roberts, D. P.Williams, F. Couny, M. Lawman, M. Mason, S. Coupland, R. Flea, H. Sabert, T. A. Birks, J. C. Knight, P. St. J. Russell, �??Low loss (1.7 dB/km) hollow core photonic bandgap fiber,�?? postdeadline paper PDP24, OFC�??04 (Los Angeles, 2004).
  4. D. G. Ouzounov, F. R. Ahmad, D. Muller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, �??Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,�?? Science 301, 1702�??1704 (2003).
    [CrossRef] [PubMed]
  5. D. G. Ouzounov, C. J. Hensley, A. L. Gaeta, N. Venkataraman, M. T. Gallagher, and K. W. Koch, �??The effective nonlinearity of hollow-core photonic band-gap fibers,�?? in preparation.
  6. F. Luan, J. C. Knight, P. St. J. Russell, S. Campbell, D. Xiao, D. T. Reid, B. J. Mangan, D. P. Williams, and P. J. Roberts,�?? Femtosecond soliton pulse delivery at 800 nm wavelength in hollow-core photonic bandgap fibers,�?? Opt. Express 12, 835�??840 (2004), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-5-835">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-5-835</a>.
    [CrossRef] [PubMed]
  7. G. Humbert, J. C. Knight, G. Bouwmans, P. St. J. Russell, D. P. Williams, P. J. Roberts, B. J. Mangan,�??Hollow core photonic cryatal fibers for beam delivery,�?? Opt. Express 12, 1477�??1484 (2004). <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-8-1477">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-8-1477</a>.
    [CrossRef] [PubMed]
  8. F. Benabid, J. C. Knight, G. Antonopoulos, P. St. J. Russell, �??Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,�?? Science 298 399�??402 (2002)
    [CrossRef] [PubMed]
  9. F. Benabid, G. Bouwmans, J. C. Knight, P. St. J. Russell , and F. Couny, �??Ultrahigh efficiency laser wavelength conversion in a gas-filled hollow core photonic crystal fiber by pure stimulated rotational raman scattering in molecular hydrogen,�?? Phys. Rev. Lett. 93 123903 (2004)
    [CrossRef] [PubMed]
  10. S. O. Konorov, A. B. Fedotov, and A. M. Zheltikov, �??Enhanced four-wave mixing in a hollow-core photonic-crystal fiber,�?? Opt. Lett. 28 1448 (2003).
    [CrossRef] [PubMed]
  11. S. Ghosh, J. E. Sharping, D. G. Ouzounov and A. L. Gaeta, �??Coherent resonant interactions and slow light with molecules confined in photonic band-gap fiber,�?? Phys. Rev. Lett. 94, 093902 (2005).
    [CrossRef] [PubMed]
  12. S. O. Konorov, A. M. Zheltikov, P. Zhou, A. P. Tarasevitch, and D. von der Linde ,�??Self-channeling of subgigawatt femtosecond laser pulses in a groung-state waveguide induced in the hollow core of a photonic crystal fiber,�?? Opt. Lett. 29 1521 (2004).
    [CrossRef] [PubMed]
  13. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, San Diego, ed. 3, 2001).
  14. L. F. Mollenauer, R. H. Stolen, J. P. Gordon, and W. J. Tomlinson, �??Extreme picosecond pulse narrowing by means of soliton effect in single-mode optical fibers,�?? Opt. Lett. 8, 289�??291 (1983).
    [CrossRef] [PubMed]
  15. G. P. Agrawal, �??Effect of intrapulse stimulated Raman scattering on soliton-effect pulse compression in optical fibers,�?? Opt. Lett. 15, 224�??226 (1990).
    [CrossRef] [PubMed]
  16. K. C. Chan and H. F. Liu, �??Effect of third-order dispersion on soliton-effect pulse compression,�?? Opt. Lett. 19, 49�??51 (1994).
    [CrossRef] [PubMed]
  17. K. C. Chan and H. F. Liu, �??Short Pulse Generation by Higher Order Soliton-Effect Comression: Effects of Optical Fiber Characteristics,�?? IEEE J. Quantum Electron. 31, 2226�??2235 (1995).
    [CrossRef]
  18. P. Beaud, W. Hodel, B. Zysset, and H. P. Weber, �??Ultrashort pulse propagation, pulse breakup, and fundamental soliton formation in a single-mode optical fiber,�?? IEEE J. Quantum Electron. 23, 1938�??1946 (1987).
    [CrossRef]
  19. K. Chan and W. Cao, �??Improved soliton-effect pulse compression by combained action of negative third-order dispersion and Raman self-scattering in optical fibers,�?? J. Opt. Soc. Am. B 15, 2371�??2375 (1998).
    [CrossRef]
  20. G. P. Agrawal, Applications of Nonlinear Fiber Optics (Academic Press, San Diego, 2001).
  21. M. Nisoli, S. De Silvestri, and O. Svelto, �??Generation of high energy 10 fs pulses by a new pulse compression technique,�?? Appl. Phys. Lett. 68, 2793�??2795 (1996)
    [CrossRef]
  22. T. Sudmeyer, F. Brunner, E. Innerhofer, R. Paschotta, K. Furusawa, J. C. Baggett, T. M. Monro, D. J. Richardson, and U. Keller, �??Nonlinear femtosecond pulse compression at high average power levels by use of a large-modearea holey fiber,�?? Opt. Lett. 28, 1951�??1953 (2003).
    [CrossRef] [PubMed]
  23. T. Brabec and F. Krausz, �??Nonlinear optical pulse propagation in the single-cycle regime,�?? Phys. Rev. Lett. 78, 3283 (1997).
    [CrossRef]
  24. E. T. J. Nibbering, G. Grillon, M. A. Franco, B. S. Prade, and A. Mysyrowicz, �??Determination of the inertial contribution to the nonlinear refracive index of air, N2, and O2 by use of unfocused high-intensity femtosecond laser pulses,�?? J. Opt. Soc. Am. B 14, 650�??660 (1997).
    [CrossRef]

Appl. Phys. Lett. (1)

M. Nisoli, S. De Silvestri, and O. Svelto, �??Generation of high energy 10 fs pulses by a new pulse compression technique,�?? Appl. Phys. Lett. 68, 2793�??2795 (1996)
[CrossRef]

IEEE J. Quantum Electron. (2)

K. C. Chan and H. F. Liu, �??Short Pulse Generation by Higher Order Soliton-Effect Comression: Effects of Optical Fiber Characteristics,�?? IEEE J. Quantum Electron. 31, 2226�??2235 (1995).
[CrossRef]

P. Beaud, W. Hodel, B. Zysset, and H. P. Weber, �??Ultrashort pulse propagation, pulse breakup, and fundamental soliton formation in a single-mode optical fiber,�?? IEEE J. Quantum Electron. 23, 1938�??1946 (1987).
[CrossRef]

J. Opt. Soc. Am. B (2)

Nature (1)

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Muller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch,�??Low-loss hollow-core silica/air photonic bandgap fibre,�?? Nature 424, 657�??659 (2003)
[CrossRef] [PubMed]

OFC???04 (1)

B. J. Mangan, L. Farr, A. Langford, P. J. Roberts, D. P.Williams, F. Couny, M. Lawman, M. Mason, S. Coupland, R. Flea, H. Sabert, T. A. Birks, J. C. Knight, P. St. J. Russell, �??Low loss (1.7 dB/km) hollow core photonic bandgap fiber,�?? postdeadline paper PDP24, OFC�??04 (Los Angeles, 2004).

Opt. Express (2)

Opt. Lett. (6)

Phys. Rev. Lett. (3)

T. Brabec and F. Krausz, �??Nonlinear optical pulse propagation in the single-cycle regime,�?? Phys. Rev. Lett. 78, 3283 (1997).
[CrossRef]

F. Benabid, G. Bouwmans, J. C. Knight, P. St. J. Russell , and F. Couny, �??Ultrahigh efficiency laser wavelength conversion in a gas-filled hollow core photonic crystal fiber by pure stimulated rotational raman scattering in molecular hydrogen,�?? Phys. Rev. Lett. 93 123903 (2004)
[CrossRef] [PubMed]

S. Ghosh, J. E. Sharping, D. G. Ouzounov and A. L. Gaeta, �??Coherent resonant interactions and slow light with molecules confined in photonic band-gap fiber,�?? Phys. Rev. Lett. 94, 093902 (2005).
[CrossRef] [PubMed]

Science (3)

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. A. Allan, �??Single-mode photonic band gap guidnce of light in air,�?? Science 285, 1537�??1539 (1999).
[CrossRef] [PubMed]

F. Benabid, J. C. Knight, G. Antonopoulos, P. St. J. Russell, �??Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,�?? Science 298 399�??402 (2002)
[CrossRef] [PubMed]

D. G. Ouzounov, F. R. Ahmad, D. Muller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, �??Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,�?? Science 301, 1702�??1704 (2003).
[CrossRef] [PubMed]

Other (3)

D. G. Ouzounov, C. J. Hensley, A. L. Gaeta, N. Venkataraman, M. T. Gallagher, and K. W. Koch, �??The effective nonlinearity of hollow-core photonic band-gap fibers,�?? in preparation.

G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, San Diego, ed. 3, 2001).

G. P. Agrawal, Applications of Nonlinear Fiber Optics (Academic Press, San Diego, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

The experimental setup.

Fig. 2.
Fig. 2.

(a) Measured autocorrelation traces as functions of pulse energy for a gas pressure of 4.5 atm, and (b) the autocorrelation width as a function of pulse energy.

Fig. 3.
Fig. 3.

Input (blue line) and output (red line) autocorrelation traces (a) and (c), and spectra (b) and (d) for a pulse energy of 225 nJ at gas pressure of 4.5 atm and for a pulse energy of 315 nJ at 9 atm, respectively.

Fig. 4.
Fig. 4.

Calculated (blue line) and measured (red line) autocorrelation (a) and spectrum (b) for a pulse with an energy of 225 nJ and for a gas pressure of 4.5 atm in the fiber. The black line in (b) is spectral attenuation of the fiber. The rise of the experimental spectrum at 1700 nm is a feature of the background level of the spectrometer.

Fig. 5.
Fig. 5.

Calculated output pulse intensity when only second-order dispersion is considered (red line) and when third-order dispersion is included (blue line).

Fig. 6.
Fig. 6.

Calculated autocorrelation for an input pulse (blue) with temporal duration of 1 ps and pulse energy of 210 nJ and the calculated output pulse autocorrelation (red) after propagation over 6 meters of this fiber.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

u ξ = n = 2 4 ( i ) n 1 L ds n ! L ds ( n ) n u τ n + i ( 1 + i ω 0 τ p τ ) p nl ,

Metrics