Abstract

Birefringent photonic-crystal fibers provide efficient polarization-sensitive anti-Stokes frequency conversion of unamplified 35-fs Ti: sapphire laser pulses, giving rise to a doublet of intense blue-shifted emission spectral lines centered at 490 and 510 nm. We show that this anti-Stokes doublet can be wavelength-demultiplexed by a polarization-separating prism. Generation of the 510-nm signal is decoupled from frequency conversion to 490 nm by accurately polarizing the pump field along one of the principal axes of the elliptically deformed fiber core.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. P.St.J. Russell, �??Photonic crystal fibers,�?? Science 299, 358-362 (2003).
    [CrossRef] [PubMed]
  2. W.J. Wadsworth, A. Ortigosa-Blanch, J.C. Knight, T.A. Birks, T.P.M. Mann, and P. St. J. Russell, �??Supercontinuum generation in photonic crystal fibers and optical fiber tapers: a novel light source,�?? J. Opt. Soc. Am. B 19, 2148-2155 (2002).
    [CrossRef]
  3. D.A. Akimov, E.E. Serebryannikov, A.M. Zheltikov, M.Schmitt, R. Maksimenka, W. Kiefer, K.V. Dukel'skii, V.S. Shevandin, Yu.N. Kondrat'ev, �??Efficient anti-Stokes generation through phase-matched four wave mixing in higher-order modes of a microstructure fiber,�?? Opt. Lett. 28, 1948-1950 (2003).
    [CrossRef] [PubMed]
  4. D.J. Jones, S.A. Diddams, J.K. Ranka, A. Stentz, R.S. Windeler, J.L. Hall, and S.T. Cundiff, �??Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,�?? Science, 288, 635-639 (2000).
    [CrossRef]
  5. R. Holzwarth, T. Udem, T.W. Hänsch, J.C. Knight, W.J. Wadsworth, and P.St.J. Russell, �??Optical frequency synthesizer for precision spectroscopy,�?? Phys. Rev. Lett. 85, 2264-2267 (2000).
    [CrossRef] [PubMed]
  6. I. Hartl, X. D. Li, C. Chudoba, R.K. Rhanta, T.H. Ko, J.G. Fujimoto, J.K. Ranka, and R.S. Windeler, �??Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber,�?? Opt. Lett. 26, 608-610 (2001).
    [CrossRef]
  7. J. G. Rarity, J. Fulconis, J. Duligall, W. J. Wadsworth, and P. S. J. Russell, "Photonic crystal fiber source of correlated photon pairs," Opt. Express 13, 534-544 (2005), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-2-534">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-2-534</a>
    [CrossRef] [PubMed]
  8. S. O. Konorov, D. A. Akimov, E. E. Serebryannikov, A. A. Ivanov, M. V. Alfimov, and A. M. Zheltikov, �??Cross-correlation FROG CARS with frequency-converting photonic-crystal fibers,�?? Phys. Rev. E 70, 057601 (2004)
    [CrossRef]
  9. H.N. Paulsen, K.M. Hilligsøe, J. Thøgersen, S.R. Keiding, and J.J. Larsen, �??Coherent anti-Stokes Raman scattering microscopy with a photonic crystal fiber based light source,�?? Opt. Lett. 28, 1123-1125 (2003).
    [CrossRef] [PubMed]
  10. S. O. Konorov and A. M. Zheltikov, "Frequency conversion of subnanojoule femtosecond laser pulses in a microstructure fiber for photochromism initiation," Opt. Express 11, 2440-2445 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-19-2440">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-19-2440</a>
    [CrossRef] [PubMed]
  11. Ortigosa-Blanch, J.C. Knight, W.J. Wadsworth, J. Arriaga, B.J. Mangan, T.A. Birks, and P.St.J. Russell, �??Highly birefringent photonic crystal fibers,�?? Opt. Lett. 25, 1325-1327 (2000).
    [CrossRef]
  12. M. J. Steel and J. R. M. Osgood, �??Elliptical-hole photonic crystal fibers,�?? Opt. Lett. 26, 229-231 (2001).
    [CrossRef]
  13. T.P. Hansen, J. Broeng, S.E.B. Libori, E. Knudsen, A. Bjarklev, J.R. Jensen, and H. Simonsen, �??Highly birefringent index-guiding photonic crystal fibers,�?? IEEE Photon. Technol. Lett. 13, 588-590 (2001).
    [CrossRef]
  14. Apolonski, B. Povazay, A. Unterhuber, W. Drexler, W.J. Wadsworth, J.C. Knight, and P.St.J. Russell, �??Spectral shaping of supercontinuum in a cobweb photonic-crystal fiber with sub-20-fs pulses,�?? J. Opt. Soc. Am. B 19, 2165-2170 (2002).
    [CrossRef]
  15. M. Lehtonen, G. Genty, H. Ludvigsen, M. Kaivola, �??Supercontinuum generation in a highly birefringent microstructured fiber,�?? Appl. Phys. Lett. 82, 2197-2199 (2003).
    [CrossRef]
  16. Minglie Hu, Ching-yue Wang,Yanfeng Li, Zhuan Wang, Lu Chai, and A.M. Zheltikov, �??Polarization- and mode-dependent anti-Stokes emission in a birefringent microstructure fiber,�?? IEEE Photon. Technol. Lett. 17, 630-632 (2005).
    [CrossRef]
  17. M. L. Hu, C. y. Wang, L. Chai, and A. M. Zheltikov, "Frequency-tunable anti-Stokes line emission by eigenmodes of a birefringent microstructure fiber," Opt. Express 12, 1932-1937 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-9-1932">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-9-1932</a>
    [CrossRef] [PubMed]
  18. M. Hu, C.-Y. Wang, Y. Li, Z. Wang, L. Chai, Y.N. Kondratev, C. Sibilia, and A.M. Zheltikov, �??An anti-Stokes-shifted doublet of guided modes in a photonic-crystal fiber selectively generated and controlled with orthogonal polarizations of the pump field,�?? Appl. Phys. B, 79, 805-809 (2004).
    [CrossRef]
  19. M. Fiorentino, J. E. Sharping, P. Kumar, A. Porzio, and R. S. Windeler, �??Soliton squeezing in microstructure fiber," Opt. Lett. 27, 649-651 (2002).
    [CrossRef]
  20. M. Fiorentino, J. E. Sharping, P. Kumar, and A. Porzio, �??Amplitude squeezing in a Mach-Zehnder interferometer: numerical analysis of experiments with microstructure fiber,�?? Opt. Express 10, 128-138 (2002), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-2-128">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-2-128</a>
    [PubMed]
  21. G. P. Agrawal, Nonlinear Fiber Optics (Academic, San Diego, 2001).
  22. P. A.Wai, H. H. Chen, Y. C. Lee, "Radiations by solitons at the zero group-dispersion wavelength of single-mode optical fibers,�?? Phys. Rev. A 41, 426-439 (1990).
    [CrossRef] [PubMed]
  23. N. Akhmediev, M. Karlsson, "Cherenkov radiation emitted by solitons in optical fibers,�?? Phys. Rev. A 51, 2602-2607 (1995).
    [CrossRef] [PubMed]
  24. F. Biancalana, D. V. Skryabin, A. V. Yulin, "Theory of the soliton self-frequency shift compensation by the resonant radiation in photonic crystal fibers,�?? Phys. Rev. E 70, 016615 (2004).
    [CrossRef]
  25. J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, G. Korn,�??Experimental Evidence for Supercontinuum Generation by Fission of Higher-Order Solitons in Photonic Fibers,�?? Phys. Rev. Lett. 88, 173901 (2002).
    [CrossRef] [PubMed]
  26. D.V. Skryabin, F. Luan, J.C. Knight, and P. St. J. Russell, �??Soliton self-frequency shift cancellation in photonic crystal fibers,�?? Science 301, 1705-1708 (2003).
    [CrossRef] [PubMed]

Appl. Phys. B (1)

M. Hu, C.-Y. Wang, Y. Li, Z. Wang, L. Chai, Y.N. Kondratev, C. Sibilia, and A.M. Zheltikov, �??An anti-Stokes-shifted doublet of guided modes in a photonic-crystal fiber selectively generated and controlled with orthogonal polarizations of the pump field,�?? Appl. Phys. B, 79, 805-809 (2004).
[CrossRef]

Appl. Phys. Lett. (1)

M. Lehtonen, G. Genty, H. Ludvigsen, M. Kaivola, �??Supercontinuum generation in a highly birefringent microstructured fiber,�?? Appl. Phys. Lett. 82, 2197-2199 (2003).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

Minglie Hu, Ching-yue Wang,Yanfeng Li, Zhuan Wang, Lu Chai, and A.M. Zheltikov, �??Polarization- and mode-dependent anti-Stokes emission in a birefringent microstructure fiber,�?? IEEE Photon. Technol. Lett. 17, 630-632 (2005).
[CrossRef]

T.P. Hansen, J. Broeng, S.E.B. Libori, E. Knudsen, A. Bjarklev, J.R. Jensen, and H. Simonsen, �??Highly birefringent index-guiding photonic crystal fibers,�?? IEEE Photon. Technol. Lett. 13, 588-590 (2001).
[CrossRef]

J. Opt. Soc. Am. B (2)

Opt. Express (4)

Opt. Lett. (6)

Phys. Rev. A (2)

P. A.Wai, H. H. Chen, Y. C. Lee, "Radiations by solitons at the zero group-dispersion wavelength of single-mode optical fibers,�?? Phys. Rev. A 41, 426-439 (1990).
[CrossRef] [PubMed]

N. Akhmediev, M. Karlsson, "Cherenkov radiation emitted by solitons in optical fibers,�?? Phys. Rev. A 51, 2602-2607 (1995).
[CrossRef] [PubMed]

Phys. Rev. E (2)

F. Biancalana, D. V. Skryabin, A. V. Yulin, "Theory of the soliton self-frequency shift compensation by the resonant radiation in photonic crystal fibers,�?? Phys. Rev. E 70, 016615 (2004).
[CrossRef]

S. O. Konorov, D. A. Akimov, E. E. Serebryannikov, A. A. Ivanov, M. V. Alfimov, and A. M. Zheltikov, �??Cross-correlation FROG CARS with frequency-converting photonic-crystal fibers,�?? Phys. Rev. E 70, 057601 (2004)
[CrossRef]

Phys. Rev. Lett. (2)

R. Holzwarth, T. Udem, T.W. Hänsch, J.C. Knight, W.J. Wadsworth, and P.St.J. Russell, �??Optical frequency synthesizer for precision spectroscopy,�?? Phys. Rev. Lett. 85, 2264-2267 (2000).
[CrossRef] [PubMed]

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, G. Korn,�??Experimental Evidence for Supercontinuum Generation by Fission of Higher-Order Solitons in Photonic Fibers,�?? Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef] [PubMed]

Science (3)

D.V. Skryabin, F. Luan, J.C. Knight, and P. St. J. Russell, �??Soliton self-frequency shift cancellation in photonic crystal fibers,�?? Science 301, 1705-1708 (2003).
[CrossRef] [PubMed]

P.St.J. Russell, �??Photonic crystal fibers,�?? Science 299, 358-362 (2003).
[CrossRef] [PubMed]

D.J. Jones, S.A. Diddams, J.K. Ranka, A. Stentz, R.S. Windeler, J.L. Hall, and S.T. Cundiff, �??Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,�?? Science, 288, 635-639 (2000).
[CrossRef]

Other (1)

G. P. Agrawal, Nonlinear Fiber Optics (Academic, San Diego, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

(a) Group-velocity dispersion D calculated with the use of the finite-element method for the doublet of fundamental modes in the PCF shown in the inset with the electric field polarized along (1) the short and (3) the long principal axis of the elliptically deformed fiber core. (b) Polarization-nonselective spectral intensity of PCF output. The image of the output beam is shown in the inset.

Fig. 2.
Fig. 2.

Diagram of the experimental setup.

Fig. 3.
Fig. 3.

Polarization-demultiplexed output of a birefringent PCF. The pump field is polarized at an angle of (a, b) 90°, (c, d) 0°, and (e, f) 45° with respect to the x-axis. The polarization analyzer selects radiation polarized along (a, c, e) the y-axis and (b, d, f) the x-axis. Respective beam images are shown in the insets.

Metrics