Abstract

We report a set of experimental observations on electromagnetically induced transparency in acetylene filled hollow-core photonic crystal fiber, involving both Λ-type and V-type interactions over several lines of the R-branch of the v 1 + v 3 ro-vibrational overtone band. Transparency as high as ~70% was achieved. A theoretical account of the sources of decoherence shows that collisions with the inner wall of the fiber core and laser frequency-jitter dominate the coherence decay.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. S. E. Harris, �??Electromagnetically induced transparency,�?? in Physics Today (1997), pp. 36-42.
  2. G. Alzetta, A. Gozzini, L. Moi et al., �??An experimental method for the observation of RF transitions and laser beat resonances in oriented Na vapour,�?? Nuovo Cimento B 36, 5-20 (1976).
    [CrossRef]
  3. L. V. Hau, S. E. Harris, Z. Dutton et al., �??Light speed reduction to 17 meters per second in an ultracold atomic gas,�?? Nature 397, 594 (1999).
    [CrossRef]
  4. C. Liu, Z. Dutton, C. H. Behroozi et al., �??Observation of coherent optical information storage in an atomic medium using halted light pulses,�?? Nature 409, 490-493 (2001).
    [CrossRef] [PubMed]
  5. A. Aspect, E. Arimondo, R. Kaiser et al., �??Laser cooling below the one-photon recoil energy by velocity-selective coherent population trapping,�?? Phys. Rev. Lett. 61, 826-829 (1988).
    [CrossRef] [PubMed]
  6. M. Jain, H. Xia, G. Y. Yin et al., �??Efficient nonlinear frequency conversion with maximal atomic coherence,�?? Phys. Rev. Lett. 77, 4326-4329 (1996).
    [CrossRef] [PubMed]
  7. K. Motomura, T. Koshimizu, K-I. Harada et al., �??Subkilohertz linewidths measured by heteodyne-detected coherent population trapping in sodium vapor,�?? Opt. Lett. 29, 1141-1143 (2004).
    [CrossRef] [PubMed]
  8. K-J. Boller, A. Imamoglu, and S. E. Harris, �??Observation of electromagnetically induced transparency,�?? Phys. Rev. Lett. 66, 2593 (1991).
    [CrossRef] [PubMed]
  9. H. Schmidt, K. L. Campman, A. C. Gossard et al., �??Tunneling induced transparency: Fano interference in intersubband transitions,�?? Appl. Phys. Lett. 70, 3455-3457 (1997).
    [CrossRef]
  10. A. V. Turukhin, V. S. Sudarchanam, M. S. Shahriar et al., �??Observation of ultraslow and stored light pulses in a solid,�?? Phys. Rev. Lett. 88, 023602 (2002).
    [CrossRef] [PubMed]
  11. J. Faist, F. Capasso, C. Sirtori et al., �??Controlling the sign of quantum intereference by tunnelling from quantum wells,�?? Nature 390, 589 (1997).
    [CrossRef]
  12. J. Qi, G. Lazarvo, X. Wang et al., �??Autler-Townes splitting in molecular lithium: Prospects for all-optical alignment of nonpolar molecules,�?? Phys. Rev. Lett. 83, 288-291 (1999).
    [CrossRef]
  13. J. M. Brown, Molecular spectroscopy (Oxford University Press, Oxford, 1998).
  14. K. Nakagawa, M. de-Labachelerie, Y. Awaji et al., �??Accurate optical frequency atlas of the 1.5 mm bands of acetylene,�?? J. Opt. Soc. Am. B 13, 2708-2714 (1996).
    [CrossRef]
  15. R.F. Cregan, B. J. Mangan, J. C. Knight et al., �??Single-mode photonic band gap guidance of light in air,�?? Science 285, 1537-1539 (1999).
    [CrossRef] [PubMed]
  16. Brian Mangan, Lance Farr, Alan Langford et al., �??Low loss (1.7 dB/km) hollow core photonic bandgap fiber,�?? presented at the Optical Fiber Communications Conference (OFC) 2004.
  17. F. Benabid, J. C. Knight, G. Antonopoulos et al., �??Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,�?? Science 298, 399-402 (2002).
    [CrossRef] [PubMed]
  18. F. Benabid, J. C. Knight, and P. St. J. Russell, �??Particle levitation and guidance in hollow-core photonic crystal fiber,�?? Opt. Express 10, 1195 (2002).
    [PubMed]
  19. F. Benabid, G. Bouwmans, J.C. Knight et al., �??Ultra-high efficiency laser wavelength conversion in gas-filled hollow core photonic crystal fiber by pure stimulated rotational Raman scattering in molecular hydrogen,�?? Phys. Rev. Lett. 93, 123903 (2004).
    [CrossRef] [PubMed]
  20. F. Benabid, F. Couny, J. C. Knight et al., �??Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,�?? Nature 434, 488-491 (2005).
    [CrossRef] [PubMed]
  21. S. Ghosh, J. Sharping, D. G. Ouzounov et al., �??Resonant optical interactions with molecules confined in photonic band-gap fibers,�?? Phys. Rev. Lett. 94, 093902 (2005).
    [CrossRef] [PubMed]
  22. M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University Press, Cambridge, 1997).
  23. J. Gea-Banacloche, Y. Q. Li, S. Z. Jin et al., �??Electromagnetically induced transparency in ladder-type inhomogeneousely broadened media: Theory and experiment,�?? Phys. Rev. A 51, 576-584 (1995).
    [CrossRef] [PubMed]
  24. E. Arimondo, �??Relaxation processes in coherent-population trapping,�?? Phys. Rev. A 54, 2216-2223 (1996).
    [CrossRef] [PubMed]
  25. M. Erhard and H. Helm, �??Buffer-gas effects on dark resonances: Theory and experiment,�?? Phys. Rev. A 63, 43813 (2001).
    [CrossRef]
  26. C. P. Rinsland, A. Baldacci, and K. N. Rao, �??Acetylene bands observed in carbon stars: a laboratory study and an illustrative example of its application,�?? Astrophys. J. Suppl. Ser. 49, 487-513 (1982).
    [CrossRef]
  27. W. C. Swann and S. L. Gilbert, �??Pressure-induced shift and broadening of 1510-1540 nm acetylene wavelength calibration lines,�?? J. Opt. Soc. Am. B 17, 1263-1270 (2000).
    [CrossRef]
  28. M. Graf and E. Arimondo, �??Doppler broadening and collisional relaxation effects in a lasing-without-inversion experiment,�?? Phys. Rev. A 51, 4030-4037 (1995).
    [CrossRef] [PubMed]
  29. E. L. Cussler, Diffusion: Mass transfer in fluid systems (Cambridge University Press, Cambridge, 1984).
  30. LS Ma, J Ye, P Dube et al., �??Ultrasensitive frequency-modulation spectroscopy enhanced by a high-finesse optical cavity: theory and application to overtone transitions of C2H2 and C2HD,�?? J. Opt. Soc. Am. B 16, 2255 (1999).
    [CrossRef]

Appl. Phys. Lett. (1)

H. Schmidt, K. L. Campman, A. C. Gossard et al., �??Tunneling induced transparency: Fano interference in intersubband transitions,�?? Appl. Phys. Lett. 70, 3455-3457 (1997).
[CrossRef]

Astrophys. J. Suppl. Ser. (1)

C. P. Rinsland, A. Baldacci, and K. N. Rao, �??Acetylene bands observed in carbon stars: a laboratory study and an illustrative example of its application,�?? Astrophys. J. Suppl. Ser. 49, 487-513 (1982).
[CrossRef]

J. Opt. Soc. Am. B (3)

Nature (4)

J. Faist, F. Capasso, C. Sirtori et al., �??Controlling the sign of quantum intereference by tunnelling from quantum wells,�?? Nature 390, 589 (1997).
[CrossRef]

F. Benabid, F. Couny, J. C. Knight et al., �??Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,�?? Nature 434, 488-491 (2005).
[CrossRef] [PubMed]

L. V. Hau, S. E. Harris, Z. Dutton et al., �??Light speed reduction to 17 meters per second in an ultracold atomic gas,�?? Nature 397, 594 (1999).
[CrossRef]

C. Liu, Z. Dutton, C. H. Behroozi et al., �??Observation of coherent optical information storage in an atomic medium using halted light pulses,�?? Nature 409, 490-493 (2001).
[CrossRef] [PubMed]

Nuovo Cimento B (1)

G. Alzetta, A. Gozzini, L. Moi et al., �??An experimental method for the observation of RF transitions and laser beat resonances in oriented Na vapour,�?? Nuovo Cimento B 36, 5-20 (1976).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Optical Fiber Communications Conference (1)

Brian Mangan, Lance Farr, Alan Langford et al., �??Low loss (1.7 dB/km) hollow core photonic bandgap fiber,�?? presented at the Optical Fiber Communications Conference (OFC) 2004.

Phys. Rev. A (4)

M. Graf and E. Arimondo, �??Doppler broadening and collisional relaxation effects in a lasing-without-inversion experiment,�?? Phys. Rev. A 51, 4030-4037 (1995).
[CrossRef] [PubMed]

J. Gea-Banacloche, Y. Q. Li, S. Z. Jin et al., �??Electromagnetically induced transparency in ladder-type inhomogeneousely broadened media: Theory and experiment,�?? Phys. Rev. A 51, 576-584 (1995).
[CrossRef] [PubMed]

E. Arimondo, �??Relaxation processes in coherent-population trapping,�?? Phys. Rev. A 54, 2216-2223 (1996).
[CrossRef] [PubMed]

M. Erhard and H. Helm, �??Buffer-gas effects on dark resonances: Theory and experiment,�?? Phys. Rev. A 63, 43813 (2001).
[CrossRef]

Phys. Rev. Lett. (7)

S. Ghosh, J. Sharping, D. G. Ouzounov et al., �??Resonant optical interactions with molecules confined in photonic band-gap fibers,�?? Phys. Rev. Lett. 94, 093902 (2005).
[CrossRef] [PubMed]

J. Qi, G. Lazarvo, X. Wang et al., �??Autler-Townes splitting in molecular lithium: Prospects for all-optical alignment of nonpolar molecules,�?? Phys. Rev. Lett. 83, 288-291 (1999).
[CrossRef]

A. V. Turukhin, V. S. Sudarchanam, M. S. Shahriar et al., �??Observation of ultraslow and stored light pulses in a solid,�?? Phys. Rev. Lett. 88, 023602 (2002).
[CrossRef] [PubMed]

A. Aspect, E. Arimondo, R. Kaiser et al., �??Laser cooling below the one-photon recoil energy by velocity-selective coherent population trapping,�?? Phys. Rev. Lett. 61, 826-829 (1988).
[CrossRef] [PubMed]

M. Jain, H. Xia, G. Y. Yin et al., �??Efficient nonlinear frequency conversion with maximal atomic coherence,�?? Phys. Rev. Lett. 77, 4326-4329 (1996).
[CrossRef] [PubMed]

K-J. Boller, A. Imamoglu, and S. E. Harris, �??Observation of electromagnetically induced transparency,�?? Phys. Rev. Lett. 66, 2593 (1991).
[CrossRef] [PubMed]

F. Benabid, G. Bouwmans, J.C. Knight et al., �??Ultra-high efficiency laser wavelength conversion in gas-filled hollow core photonic crystal fiber by pure stimulated rotational Raman scattering in molecular hydrogen,�?? Phys. Rev. Lett. 93, 123903 (2004).
[CrossRef] [PubMed]

Physics Today (1)

S. E. Harris, �??Electromagnetically induced transparency,�?? in Physics Today (1997), pp. 36-42.

Science (2)

R.F. Cregan, B. J. Mangan, J. C. Knight et al., �??Single-mode photonic band gap guidance of light in air,�?? Science 285, 1537-1539 (1999).
[CrossRef] [PubMed]

F. Benabid, J. C. Knight, G. Antonopoulos et al., �??Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,�?? Science 298, 399-402 (2002).
[CrossRef] [PubMed]

Other (3)

E. L. Cussler, Diffusion: Mass transfer in fluid systems (Cambridge University Press, Cambridge, 1984).

J. M. Brown, Molecular spectroscopy (Oxford University Press, Oxford, 1998).

M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University Press, Cambridge, 1997).

Supplementary Material (1)

» Media 1: GIF (48 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic illustration of the energy level diagram of rotational transitions between two vibrational states (v and v’). The rotational transitions in the P-branch correspond to transitions accompanied by an excess of one unit of angular momentum, i.e. ΔJ = -1 , and in R-branch to transitions with ΔJ = +1 With this system a combination of control-probe lasers resonant with P(J+1)-R(J-1) forms a Λ interaction and P(J+1)-R(J+1) forms a V interaction producing a comb of transparencies over the spectrum covered by the R-branch.

Fig. 2.
Fig. 2.

Schematic representation of the experimental set-up. PD: photodetector, IF: interference filters, S: splice between the HC-PCF and a solid SMF, FPC: fiber polarization controller, EDFA: erbium-doped fiber amplifier, ECDL: external cavity diode laser. The inset on the left-hand side is a SEM of the HC-PCF used as the acetylene cell.

Fig. 3.
Fig. 3.

(a) The transmission spectrum of a ~1m long acetylene-filled HC-PCF at a pressure of ~0.1-1 mbar. Inset: schematics of Λ and V interactions. (b) Measured (black line) and theoretical (grey line) transmission spectra for coupled power in the range of 400-500 mW, gas pressure in the range of 0.1-1 mbar and a fiber length of ~2 m. The asymmetry in some of the transparency traces are due to the probe-frequency detuning from the absorption transition.

Fig. 4.
Fig. 4.

Evolution with the control-laser Rabi frequency of the transparency height (A) and full-width-at-half-maximum (B). The operating pressure range is 0.1-1 mbar and the fiber length is ~2 m.

Fig. 5.
Fig. 5.

(49 kB) Animation of the evolution of the electromagnetically induced transparency with control-laser power launched into the HC-PCF for P(15)-R(13) combination.

Fig. 6.
Fig. 6.

Measured and theoretical transmission trace of R(11) line in the absence of control beam (A) and in the presence of ~800 mW control power (B). The operating pressure range is 0.001-0.01 mbar and length of fiber ~2m.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

χ = 1 2 ic μ 2 N π ε 0 ħ ω P u e ( z 2 ) [ 1 E rf ( z ) ] ,
z = c ω P u [ γ od i Δ P + Ω c 2 4 γ gr i ( Δ P Δ C ) ] ,
γ od = Γ sp + γ coll 2 + δ ω P 2 and γ gr = γ coll + γ tf + δ ω P 2 + δ ω C 2
γ od γ coll wall 2 and γ gr γ coll wall + δ ω C 2 .

Metrics