Abstract

A computer simulation for the fabrication of aspheric hexagonal micro lens arrays by use of the laser dragging process was investigated. An excimer laser dragging process is capable of manufacturing a microstructure array with a curved surface. Generally, this process was used to produce aspheric micro lens arrays with an arrangement of rectangular coordinates. The first step in the proposed dragging process is to generate micro channels whose cross-section shape is similar to that of the mask. Then the dragging procedure is repeated twice, each time after rotating the work piece by 60 deg relative to the previous channels. This hexagonal micro lens array may be used in the application of image processing. Our results show that the hexagonal micro lens array has a better axial symmetry and higher fill factor than a rectangle one.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. B. Ezell, �??Making microlens backlights grow up,�?? Information Display 5, 21-26 (2001).
  2. H. P. Herzig, Micro-Optics (Taylor & Francis, 1997).
  3. N. F. Borrelli, Microoptics Technology (Marcel Dekker, 1999).
  4. P. E. Dyer, �??Excimer laser polymer ablation: twenty years,�?? Appl. Phys. A 77, 167-173 (2003).
  5. N. H. Rizvi, �??Production of novel 3D microstructures using excimer laser mask projection techniques,�?? Proc. SPIE 3680, 546-552 (1999).
    [CrossRef]
  6. P. T. Rumsby, E.C. Harvey and D.W. Thomas, �??Laser Microprojection for micromechanical device fabrication,�?? Proc. SPIE 2921, 684-692 (1997).
    [CrossRef]
  7. E. C. Harvey, P. T. Rumsby, M. C. Gower, and J. L. Remnant, �??Microstructing by excimer laser,�?? Proc. SPIE 2639, 266-277 (1995).
    [CrossRef]
  8. K. Zimmer and F. Bigl, �?? Micro structuring of surfaces by excimer laser machining,�?? Proc. SENSOR �??95, 779-782 (1995).
  9. K. Zimmer, D. Hirsch and F. Bigl,�?? Excimer laser machining for the fabrication of analogous microstructures,�?? Appl. Surf. Sci. 96, 425-429 (1995).
    [CrossRef]
  10. K. Naessens, H. Ottevaere, R. Baets, P. V. Daele, and H. Thienpont, �??Direct writing of microlenses in polycarbonate with excimer laser ablation,�?? Appl. Opt. 42, 6349-6359 (2003).
    [CrossRef] [PubMed]
  11. H. K. Tonshoff et al., �??NC-controlled production of smooth 3D surfaces in brittle materials with 193 nm excimer laser,�?? Proc. SPIE 3511, 56-66 (1998).
    [CrossRef]

Appl. Opt. (1)

Appl. Phys. A (1)

P. E. Dyer, �??Excimer laser polymer ablation: twenty years,�?? Appl. Phys. A 77, 167-173 (2003).

Appl. Surf. Sci. (1)

K. Zimmer, D. Hirsch and F. Bigl,�?? Excimer laser machining for the fabrication of analogous microstructures,�?? Appl. Surf. Sci. 96, 425-429 (1995).
[CrossRef]

Information Display (1)

B. Ezell, �??Making microlens backlights grow up,�?? Information Display 5, 21-26 (2001).

Proc. SENSOR (1)

K. Zimmer and F. Bigl, �?? Micro structuring of surfaces by excimer laser machining,�?? Proc. SENSOR �??95, 779-782 (1995).

Proc. SPIE (4)

H. K. Tonshoff et al., �??NC-controlled production of smooth 3D surfaces in brittle materials with 193 nm excimer laser,�?? Proc. SPIE 3511, 56-66 (1998).
[CrossRef]

N. H. Rizvi, �??Production of novel 3D microstructures using excimer laser mask projection techniques,�?? Proc. SPIE 3680, 546-552 (1999).
[CrossRef]

P. T. Rumsby, E.C. Harvey and D.W. Thomas, �??Laser Microprojection for micromechanical device fabrication,�?? Proc. SPIE 2921, 684-692 (1997).
[CrossRef]

E. C. Harvey, P. T. Rumsby, M. C. Gower, and J. L. Remnant, �??Microstructing by excimer laser,�?? Proc. SPIE 2639, 266-277 (1995).
[CrossRef]

Other (2)

H. P. Herzig, Micro-Optics (Taylor & Francis, 1997).

N. F. Borrelli, Microoptics Technology (Marcel Dekker, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1.
Fig. 1.

Schematic diagram for the laser dragging process.

Fig. 2.
Fig. 2.

SEM picture of rectangular rectangular micro lens array.

Fig. 3.
Fig. 3.

Schematic diagram of dragging process for rectangular (left) and hexagonal micro lens array (right).

Fig. 4.
Fig. 4.

Simulated (left) and machining (right) results of rectangular micro lens array.

Fig. 5.
Fig. 5.

Contour graph of single micro lens with rectangular coordinate.

Fig. 6.
Fig. 6.

Contour graph of single micro lens with hexagonal coordinate.

Fig. 7.
Fig. 7.

Mesh graph of rectangular micro lens array.

Fig. 8.
Fig. 8.

Mesh graph of hexagonal micro lens array.

Fig. 9.
Fig. 9.

Comparison graphs of two cross sections for rectangular coordinates.

Fig. 10.
Fig. 10.

Comparison graphs of two cross sections for hexagonal coordinates.

Fig. 11.
Fig. 11.

Difference graph of two cross sections for rectangular coordinates.

Fig. 12.
Fig. 12.

Difference graph of two cross sections for hexagonal coordinates.

Fig. 13.
Fig. 13.

Contour graph of 3×3 rectangular micro lens array.

Fig. 14.
Fig. 14.

Contour graph of hexagonal micro lens array.

Tables (2)

Tables Icon

Table 1. Comparison table

Tables Icon

Table 2. Comparison table

Metrics