Abstract

An optical thresholding technique based on super-continuum generation in dispersion flattened fiber is proposed and experimentally demonstrated to enable data-rate detection in optical code division multiple access networks. The proposed scheme exhibits an excellent discrimination between a desired signal and interference signals with features of pulse reshaping, low insertion loss, polarization independency as well as reasonable operation power.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. P. R. Prucnal, M. A. Santoro, and T. R. Fan, �??Spread spectrum fiber-optic local area network using optical processing,�?? J. Lightwave Technol. 4, 547-554 (1986).
    [CrossRef]
  2. J. A. Salehi, �??Code division multiple-access techniques in optical fiber networks, Part I: fundamental principles,�?? IEEE Trans. Commun. 37, 824-842 (1989).
  3. D. D. Sampson, G. J. Pendock, and R. A. Griffin, �??Photonic code-division multiple-access communications,�?? Fiber and Integrated Optics 16, 129-157 (1997).
    [CrossRef]
  4. Kitayama, X. Wang, and H. Sotobayashi, �??State of the art and applications of optical code division multiple access (Invited),�?? in European Cnference of Optical Communication (ECOC�??04), (Stockholm, Sweden, 2004), Tu4.6.1.
  5. X. Wang and K. Kitayama, �??Analysis of beat noise in coherent and incoherent time-spreading OCDMA,�?? J. Lightwave Technol. 22, 2226-2235, (2004).
    [CrossRef]
  6. P. C. Teh, P. Petropoulos, M. Ibsen and D. J. Richardson, �??A comparative study of the performance of sevenand 63-chip optical code-division multiple-access encoders and decoders based on superstructured fiber Bragg gratings,�?? J. Lightwave Technol. 19, 1352-1365 (2001).
  7. X. Wang, K. Matsushima, A. Nishiki, N. Wada, F. Kubota, and K. Kitayama, �??High performance optical code generation and recognition using 511-chip 640Gchip/s phase-shifted superstructureed FBG,�?? Optics Lett. 30, 355-357 (2005).
    [CrossRef]
  8. Z. Jiang, D. S. Seo, S. D. Yang, D. E. Leaird, R. V. Roussev, C. Langrock, M. M. Fejer and A. M. Weiner, �??Four-User 10-Gb/s Spectrally Phase-Coded O-CDMA System Operating at 30 fJ/bit,�?? IEEE Photonics Technol. Lett. 17, 705-707, (2005).
  9. H. P. Sardesai, and A. M. Weiner, �??Nonlinear fibre-optic receiver for ultrashort pulse code division multiple access communications,�?? Electron. Lett. 33, 610-611, (1997).
  10. J. H. Lee, P. C. Teh, P. Petropoulos, M. Ibsen, and D. J. Richardson, �??A grating-based OCDMA coding-decoding system incorporating a nonlinear optical loop mirror for improved code recognition and noise reduction,�?? J. Lightwave Technol. 20, 36-46 (2002).
  11. R. P. Scott, W. Cong, K. Li, V. J. Hernandez, B. H. Kolner, J. P. Heritage, and S. J. Ben Yoo, �??Demonstration of an Error-Free 4 �?10 Gb/s Multiuser SPECTS O-CDMA Network Testbed,�?? IEEE Photonics Technol. Lett. 16, 2186-2188, (2004).
  12. J. H. Lee, P. C. Teh, Z. Yusoff, M. Ibsen, W. Belardi, T. M. Monro, and D. J. Richardson, �??A holey fiber-based nonlinear thresholding device for optical CDMA receiver performance enhancement,�?? IEEE Photonics Technol. Lett. 14, 876-878, (2002).
  13. K. Morioka, S. Uchiyama, S. Kawanishi, M. Suzuki, and S. Saruwatari, �??Multiwavelength picosecond pulse source with low jitter and high optical frequency stability based on 200nm supercontinuum filtering,�?? Electro. Lett. 31, 1064-1066, (1995).
  14. T. Okuno, M. Onishi, and M. Nishimura, �??Generation of ultra-broad-band supercontinuum by dispersion-flattened and decreasing fiber,�?? IEEE Photon. Technol. Lett. 10, 72�??74, (1998).
  15. H. Sotobayashi and K. Kitayama, �??325 nm bandwidth supercontinuum generation at 10 Gbit/s using dispersion-flattened and nondecreasing normal dispersion fiber with pulse compression technique,�?? Electron. Lett. 34, 1336�??1337, (1998).
  16. X. Wang, N. Wada, T. Hamanaka, A. Nishiki and K. Kitayama, �??10-user asynchronous OCDMA transmission experiment with 511-chip SSFBG and SC-based optical thresholder,�?? Optical Fiber Communication Conf. (OFC�??05 postdeadline), (Optical Society of America, Anaheim, USA, 2005), PD 33.

ECOC 2004 (1)

Kitayama, X. Wang, and H. Sotobayashi, �??State of the art and applications of optical code division multiple access (Invited),�?? in European Cnference of Optical Communication (ECOC�??04), (Stockholm, Sweden, 2004), Tu4.6.1.

Electro. Lett. (2)

K. Morioka, S. Uchiyama, S. Kawanishi, M. Suzuki, and S. Saruwatari, �??Multiwavelength picosecond pulse source with low jitter and high optical frequency stability based on 200nm supercontinuum filtering,�?? Electro. Lett. 31, 1064-1066, (1995).

H. Sotobayashi and K. Kitayama, �??325 nm bandwidth supercontinuum generation at 10 Gbit/s using dispersion-flattened and nondecreasing normal dispersion fiber with pulse compression technique,�?? Electron. Lett. 34, 1336�??1337, (1998).

Electron. Lett. (1)

H. P. Sardesai, and A. M. Weiner, �??Nonlinear fibre-optic receiver for ultrashort pulse code division multiple access communications,�?? Electron. Lett. 33, 610-611, (1997).

IEEE Photon. Technol. Lett. (1)

T. Okuno, M. Onishi, and M. Nishimura, �??Generation of ultra-broad-band supercontinuum by dispersion-flattened and decreasing fiber,�?? IEEE Photon. Technol. Lett. 10, 72�??74, (1998).

IEEE Photonics Technol. Lett. (3)

R. P. Scott, W. Cong, K. Li, V. J. Hernandez, B. H. Kolner, J. P. Heritage, and S. J. Ben Yoo, �??Demonstration of an Error-Free 4 �?10 Gb/s Multiuser SPECTS O-CDMA Network Testbed,�?? IEEE Photonics Technol. Lett. 16, 2186-2188, (2004).

J. H. Lee, P. C. Teh, Z. Yusoff, M. Ibsen, W. Belardi, T. M. Monro, and D. J. Richardson, �??A holey fiber-based nonlinear thresholding device for optical CDMA receiver performance enhancement,�?? IEEE Photonics Technol. Lett. 14, 876-878, (2002).

Z. Jiang, D. S. Seo, S. D. Yang, D. E. Leaird, R. V. Roussev, C. Langrock, M. M. Fejer and A. M. Weiner, �??Four-User 10-Gb/s Spectrally Phase-Coded O-CDMA System Operating at 30 fJ/bit,�?? IEEE Photonics Technol. Lett. 17, 705-707, (2005).

IEEE Trans. Commun. (1)

J. A. Salehi, �??Code division multiple-access techniques in optical fiber networks, Part I: fundamental principles,�?? IEEE Trans. Commun. 37, 824-842 (1989).

J. Lightwave Technol. (4)

Opt. Lett. (1)

Optical Fiber Communication 2005 (1)

X. Wang, N. Wada, T. Hamanaka, A. Nishiki and K. Kitayama, �??10-user asynchronous OCDMA transmission experiment with 511-chip SSFBG and SC-based optical thresholder,�?? Optical Fiber Communication Conf. (OFC�??05 postdeadline), (Optical Society of America, Anaheim, USA, 2005), PD 33.

Other (1)

D. D. Sampson, G. J. Pendock, and R. A. Griffin, �??Photonic code-division multiple-access communications,�?? Fiber and Integrated Optics 16, 129-157 (1997).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

(a) Configuration and operation principle of the SC-based optical thresholder (b) The dispersion characteristics of the DFF

Fig. 2.
Fig. 2.

Experimental setup

Fig. 3.
Fig. 3.

(a) Measured spectra of the original pulse, generated SC with different input power and signal after BPF (b) Power transfer function of the SC-based optical thrtesholder

Fig. 4.
Fig. 4.

(a) SHG traces of the original pulses and sigals after optical thresholder (b) Eye diagram before the SC-based optical thresholder (c) Eye diagram after the SC-based optical thresholder

Fig. 5.
Fig. 5.

BER performance with and w/o the SC-based optical thresholder for different receiver bandwidth fc

Fig. 6.
Fig. 6.

Operation power vs. number of active users

Tables (1)

Tables Icon

Table I. Performance comparison of different optical thresholding techniques

Metrics