Abstract

Phase-resolved Doppler optical coherence tomography has been used to image blood flow dynamics in various tissues using both time-domain and spectral-domain optical coherence tomography techniques. In this manuscript, we present phase-resolved Doppler imaging with a high-speed optical frequency domain imaging system. We demonstrate that by correcting for spurious timing-induced phase errors, excellent flow sensitivity can be achieved, limited only by the imaging signal-to-noise ratio. Conventional and Doppler images showing flow in an Intralipid phantom and in human skin are presented. Additionally, we demonstrate the ability of phase-resolved OFDI to measure high flow rates without the deleterious effects of fringe washout.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito and J. G. Fujimoto, "Optical coherence tomography," Science 254 1178 (1991)
    [CrossRef] [PubMed]
  2. Z. P. Chen, T. E. Milner, D. Dave and J. S. Nelson, "Optical Doppler tomographic imaging of fluid flow velocity in highly scattering media," Opt. Lett. 22 64-66 (1997)
    [CrossRef] [PubMed]
  3. J. A. Izatt, M. D. Kulkami, S. Yazdanfar, J. K. Barton and A. J. Welch, "In vivo bidirectional color Doppler flow imaging of picoliter blood volumes using optical coherence tomograghy," Opt. Lett. 22 1439-1441 (1997)
    [CrossRef]
  4. J. K. Barton, J. A. Izatt, M. D. Kulkarni, S. Yazdanfar and A. J. Welch, "Three-dimensional reconstruction of blood vessels from in vivo color Doppler optical coherence tomography images," Dermatology 198 355-361 (1999)
    [CrossRef]
  5. Z. P. Chen, T. E. Milner, S. Srinivas, X. J. Wang, A. Malekafzali, M. J. C. vanGemert and J. S. Nelson, "Noninvasive imaging of in vivo blood flow velocity using optical Doppler tomography," Opt. Lett. 22 1119-1121 (1997)
    [CrossRef] [PubMed]
  6. M. C. Pierce, B. H. Park, B. Cense and J. F. de Boer, "Simultaneous intensity, birefringence, and flow measurements with high-speed fiber-based optical coherence tomography," Opt. Lett. 27 1534-1536 (2002)
    [CrossRef]
  7. Y. Zhao, Z. Chen, C. Saxer, S. Xiang, J. F. de Boer and J. S. Nelson, "Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity," Opt. Lett. 25 114 (2000)
    [CrossRef]
  8. B. R. White, M. C. Pierce, N. Nassif, B. Cense, B. H. Park, G. J. Tearney, B. E. Bouma, T. C. Chen and J. F. de Boer, "In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical Doppler tomography," Opt. Express 11 (2003) <a href ="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-25-3490">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-25-3490 </a>
    [CrossRef] [PubMed]
  9. S. Yazdanfar, A. M. Rollins and J. A. Izatt, "Imaging and velocimetry of the human retinal circulation with color Doppler optical coherence tomography," Opt. Lett. 25 1448 (2000)
    [CrossRef]
  10. V. X. D. Yang, M. L. Gordon, T. Shou-jiang, N. E. Marcon, G. Gardiner, Q. Bing, S. Bisland, E. Seng-Yue, S. Lo, J. Pekar, B. C. Wilson and I. A. Vitkin, "High speed, wide velocity dynamic range Doppler optical coherence tomography (Part III): in vivo endoscopic imaging of blood flow in the rat and human gastrointestinal tracts," Opt. Express 11 (2003) <a href ="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-19-2416">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-19-2416</a>
    [PubMed]
  11. A. F. Fercher, C. K. Hitzenberger, G. Kamp and S. Y. Elzaiat, "Measurement Of Intraocular Distances By Backscattering Spectral Interferometry," Opt. Commun. 117 43-48 (1995)
    [CrossRef]
  12. G. Hausler and M. W. Lindner, "Coherence radar and spectral radar - new tools for dermatological diagnosis," J. Biomed. Opt. 3 21-31 (1998)
    [CrossRef]
  13. M. A. Choma, M. V. Sarunic, C. H. Yang and J. A. Izatt, "Sensitivity advantage of swept source and Fourier domain optical coherence tomography," Opt. Express 11 2183-2189 (2003) <a href ="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-18-2183">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-18-2183</a>
    [CrossRef] [PubMed]
  14. J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney and B. E. Bouma, "Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography," Opt. Lett. 28 2067-2069 (2003)
    [CrossRef] [PubMed]
  15. R. Leitgeb, C. K. Hitzenberger and A. F. Fercher, "Performance of fourier domain vs. time domain optical coherence tomography," Opt. Express 11 889-894 (2003) <a href ="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-8-889">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-8-889</a>
    [CrossRef] [PubMed]
  16. S. H. Yun, G. J. Tearney, B. E. Bouma, B. H. Park and J. F. de Boer, "High-speed spectral-domain optical coherence tomography at 1.3 μm wavelength," Opt. Express 11 3598-3604 (2003) http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-26-3598
    [CrossRef] [PubMed]
  17. S. H. Yun, G. J. Tearney, J. F. de Boer, N. Iftimia and B. E. Bouma, "High-speed optical frequency-domainimaging," Opt. Express 11 2953-2963 (2003) <a href ="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-22-2953">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-22-2953</a>
    [CrossRef] [PubMed]
  18. N. Nassif, B. Cense, B. H. Park, S. H. Yun, T. C. Chen, B. E. Bouma, G. J. Tearney and J. F. de Boer, "In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography," Opt. Lett. 29 480-482 (2004)
    [CrossRef] [PubMed]
  19. M. Wojtkowski, T. Bajraszewski, P. Targowski and A. Kowalczyk, "Real-time in vivo imaging by high-speed spectral optical coherence tomography," Opt. Lett. 28 1745-1747 (2003)
    [CrossRef] [PubMed]
  20. M. V. Sarunic, M. A. Choma, C. H. Yang and J. A. Izatt, "Instantaneous complex conjugate resolved spectral domain and swept-source OCT using 3x3 fiber couplers," Opt. Express 13 957-967 (2005) <a href ="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-3-957">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-3-957</a>
    [CrossRef] [PubMed]
  21. R. Huber, M. Wojtkowski, K. Taira, J. G. Fujimoto and K. Hsu, "Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles," Opt. Express 13 3513-3528 (2005) <a href ="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-9-3513">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-9-3513</a>
    [CrossRef] [PubMed]
  22. J. Zhang, J. S. Nelson and Z. P. Chen, "Removal of a mirror image and enhancement of the signal-to-noise ratio in Fourier-domain optical coherence tomography using an electro-optic phase modulator," Opt. Lett. 30 147-149 (2005)
    [CrossRef] [PubMed]
  23. R. A. Leitgeb, L. Schmetterer, W. Drexler, A. F. Fercher, R. J. Zawadzki and T. Bajraszewski, "Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography," Opt. Express 11 3116-3121 (2003) <a href ="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-23-3116">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-23-3116</a>
    [CrossRef] [PubMed]
  24. S. H. Yun, G. J. Tearney, J. F. de Boer and B. E. Bouma, "Motion artifacts in optical coherence tomography with frequency-domain ranging," Opt. Express 12 2977-2998 (2004) <a href ="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-13-2977">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-13-2977</a>
    [CrossRef] [PubMed]
  25. W. Y. Oh, S. H. Yun, G. J. Tearney and B. E. Bouma, "115 kHz tuning repetition rate ultrahigh-speed wavelength-swept semiconductor laser," Submitted to Optics Letters (2005)
  26. W. Y. Oh, S. H. Yun, G. J. Tearney and B. E. Bouma, "Wide tuning range avelength-swept laser with two semiconductor optical amplifiers," IEEE Photonics Tech. L. 17 678-680 (2005)
    [CrossRef]
  27. B. E. Bouma, G. J. Tearney, C. C. Compton and N. S. Nishioka, "High-resolution imaging of the human esophagus and stomach in vivo using optical coherence tomography," Gastrointest. Endosc. 51 467-474 (2000)
    [CrossRef] [PubMed]
  28. B. H. Park, M. C. Pierce, B. Cense, S. H. Yun, M. Mujat, G. J. Tearney, B. E. Bouma and J. F. de Boer, "Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 μm," Opt. Express 13 3931-3944 (2005) <a href ="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-11-3931">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-11-3931</a>
    [CrossRef] [PubMed]
  29. S. Yazdanfar, C. H. Yang, M. V. Sarunic and J. A. Izatt, "Frequency estimation precision in Doppler optical coherence tomography using the Cramer-Rao lower bound," Opt. Express 13 410-416 (2005) <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-2-410">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-2-410</a>
    [CrossRef] [PubMed]
  30. S. H. Yun, C. Boudoux, G. J. Tearney and B. E. Bouma, "High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter," Opt. Lett. 28 1981-1983 (2003)
    [CrossRef] [PubMed]
  31. I. K. Jang, B. E. Bouma, D. H. Kang, S. J. Park, S. W. Park, K. B. Seung, K. B. Choi, M. Shishkov, K. Schlendorf, E. Pomerantsev, S. L. Houser, H. T. Aretz and G. J. Tearney, "Visualization of coronary atherosclerotic plaques in patients using optical coherence tomography: Comparison with intravascular ultrasound," J. Am. Coll. Cardiol. 39 604-609 (2002)

Dermatology (1)

J. K. Barton, J. A. Izatt, M. D. Kulkarni, S. Yazdanfar and A. J. Welch, "Three-dimensional reconstruction of blood vessels from in vivo color Doppler optical coherence tomography images," Dermatology 198 355-361 (1999)
[CrossRef]

Gastrointest. Endosc. (1)

B. E. Bouma, G. J. Tearney, C. C. Compton and N. S. Nishioka, "High-resolution imaging of the human esophagus and stomach in vivo using optical coherence tomography," Gastrointest. Endosc. 51 467-474 (2000)
[CrossRef] [PubMed]

IEEE Photonics Tech. L. (1)

W. Y. Oh, S. H. Yun, G. J. Tearney and B. E. Bouma, "Wide tuning range avelength-swept laser with two semiconductor optical amplifiers," IEEE Photonics Tech. L. 17 678-680 (2005)
[CrossRef]

J. Am. Coll. Cardiol. (1)

I. K. Jang, B. E. Bouma, D. H. Kang, S. J. Park, S. W. Park, K. B. Seung, K. B. Choi, M. Shishkov, K. Schlendorf, E. Pomerantsev, S. L. Houser, H. T. Aretz and G. J. Tearney, "Visualization of coronary atherosclerotic plaques in patients using optical coherence tomography: Comparison with intravascular ultrasound," J. Am. Coll. Cardiol. 39 604-609 (2002)

J. Biomed. Opt. (1)

G. Hausler and M. W. Lindner, "Coherence radar and spectral radar - new tools for dermatological diagnosis," J. Biomed. Opt. 3 21-31 (1998)
[CrossRef]

Opt. Commun. (1)

A. F. Fercher, C. K. Hitzenberger, G. Kamp and S. Y. Elzaiat, "Measurement Of Intraocular Distances By Backscattering Spectral Interferometry," Opt. Commun. 117 43-48 (1995)
[CrossRef]

Opt. Express (12)

B. R. White, M. C. Pierce, N. Nassif, B. Cense, B. H. Park, G. J. Tearney, B. E. Bouma, T. C. Chen and J. F. de Boer, "In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical Doppler tomography," Opt. Express 11 (2003) <a href ="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-25-3490">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-25-3490 </a>
[CrossRef] [PubMed]

V. X. D. Yang, M. L. Gordon, T. Shou-jiang, N. E. Marcon, G. Gardiner, Q. Bing, S. Bisland, E. Seng-Yue, S. Lo, J. Pekar, B. C. Wilson and I. A. Vitkin, "High speed, wide velocity dynamic range Doppler optical coherence tomography (Part III): in vivo endoscopic imaging of blood flow in the rat and human gastrointestinal tracts," Opt. Express 11 (2003) <a href ="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-19-2416">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-19-2416</a>
[PubMed]

R. Leitgeb, C. K. Hitzenberger and A. F. Fercher, "Performance of fourier domain vs. time domain optical coherence tomography," Opt. Express 11 889-894 (2003) <a href ="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-8-889">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-8-889</a>
[CrossRef] [PubMed]

S. H. Yun, G. J. Tearney, J. F. de Boer and B. E. Bouma, "Motion artifacts in optical coherence tomography with frequency-domain ranging," Opt. Express 12 2977-2998 (2004) <a href ="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-13-2977">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-13-2977</a>
[CrossRef] [PubMed]

S. H. Yun, G. J. Tearney, J. F. de Boer, N. Iftimia and B. E. Bouma, "High-speed optical frequency-domainimaging," Opt. Express 11 2953-2963 (2003) <a href ="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-22-2953">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-22-2953</a>
[CrossRef] [PubMed]

R. A. Leitgeb, L. Schmetterer, W. Drexler, A. F. Fercher, R. J. Zawadzki and T. Bajraszewski, "Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography," Opt. Express 11 3116-3121 (2003) <a href ="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-23-3116">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-23-3116</a>
[CrossRef] [PubMed]

S. H. Yun, G. J. Tearney, B. E. Bouma, B. H. Park and J. F. de Boer, "High-speed spectral-domain optical coherence tomography at 1.3 μm wavelength," Opt. Express 11 3598-3604 (2003) http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-26-3598
[CrossRef] [PubMed]

M. A. Choma, M. V. Sarunic, C. H. Yang and J. A. Izatt, "Sensitivity advantage of swept source and Fourier domain optical coherence tomography," Opt. Express 11 2183-2189 (2003) <a href ="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-18-2183">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-18-2183</a>
[CrossRef] [PubMed]

S. Yazdanfar, C. H. Yang, M. V. Sarunic and J. A. Izatt, "Frequency estimation precision in Doppler optical coherence tomography using the Cramer-Rao lower bound," Opt. Express 13 410-416 (2005) <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-2-410">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-2-410</a>
[CrossRef] [PubMed]

M. V. Sarunic, M. A. Choma, C. H. Yang and J. A. Izatt, "Instantaneous complex conjugate resolved spectral domain and swept-source OCT using 3x3 fiber couplers," Opt. Express 13 957-967 (2005) <a href ="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-3-957">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-3-957</a>
[CrossRef] [PubMed]

R. Huber, M. Wojtkowski, K. Taira, J. G. Fujimoto and K. Hsu, "Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles," Opt. Express 13 3513-3528 (2005) <a href ="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-9-3513">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-9-3513</a>
[CrossRef] [PubMed]

B. H. Park, M. C. Pierce, B. Cense, S. H. Yun, M. Mujat, G. J. Tearney, B. E. Bouma and J. F. de Boer, "Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 μm," Opt. Express 13 3931-3944 (2005) <a href ="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-11-3931">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-11-3931</a>
[CrossRef] [PubMed]

Opt. Lett (1)

M. C. Pierce, B. H. Park, B. Cense and J. F. de Boer, "Simultaneous intensity, birefringence, and flow measurements with high-speed fiber-based optical coherence tomography," Opt. Lett. 27 1534-1536 (2002)
[CrossRef]

Opt. Lett. (11)

W. Y. Oh, S. H. Yun, G. J. Tearney and B. E. Bouma, "115 kHz tuning repetition rate ultrahigh-speed wavelength-swept semiconductor laser," Submitted to Optics Letters (2005)

M. Wojtkowski, T. Bajraszewski, P. Targowski and A. Kowalczyk, "Real-time in vivo imaging by high-speed spectral optical coherence tomography," Opt. Lett. 28 1745-1747 (2003)
[CrossRef] [PubMed]

S. H. Yun, C. Boudoux, G. J. Tearney and B. E. Bouma, "High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter," Opt. Lett. 28 1981-1983 (2003)
[CrossRef] [PubMed]

J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney and B. E. Bouma, "Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography," Opt. Lett. 28 2067-2069 (2003)
[CrossRef] [PubMed]

Y. Zhao, Z. Chen, C. Saxer, S. Xiang, J. F. de Boer and J. S. Nelson, "Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity," Opt. Lett. 25 114 (2000)
[CrossRef]

Z. P. Chen, T. E. Milner, D. Dave and J. S. Nelson, "Optical Doppler tomographic imaging of fluid flow velocity in highly scattering media," Opt. Lett. 22 64-66 (1997)
[CrossRef] [PubMed]

Z. P. Chen, T. E. Milner, S. Srinivas, X. J. Wang, A. Malekafzali, M. J. C. vanGemert and J. S. Nelson, "Noninvasive imaging of in vivo blood flow velocity using optical Doppler tomography," Opt. Lett. 22 1119-1121 (1997)
[CrossRef] [PubMed]

J. A. Izatt, M. D. Kulkami, S. Yazdanfar, J. K. Barton and A. J. Welch, "In vivo bidirectional color Doppler flow imaging of picoliter blood volumes using optical coherence tomograghy," Opt. Lett. 22 1439-1441 (1997)
[CrossRef]

S. Yazdanfar, A. M. Rollins and J. A. Izatt, "Imaging and velocimetry of the human retinal circulation with color Doppler optical coherence tomography," Opt. Lett. 25 1448 (2000)
[CrossRef]

N. Nassif, B. Cense, B. H. Park, S. H. Yun, T. C. Chen, B. E. Bouma, G. J. Tearney and J. F. de Boer, "In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography," Opt. Lett. 29 480-482 (2004)
[CrossRef] [PubMed]

J. Zhang, J. S. Nelson and Z. P. Chen, "Removal of a mirror image and enhancement of the signal-to-noise ratio in Fourier-domain optical coherence tomography using an electro-optic phase modulator," Opt. Lett. 30 147-149 (2005)
[CrossRef] [PubMed]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito and J. G. Fujimoto, "Optical coherence tomography," Science 254 1178 (1991)
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Basic configuration of the OFDI system.

Fig. 2.
Fig. 2.

(a) The implementation of a calibration mirror used to generate a calibration signal which allows measurement of the timing-induced phase variations for each A-line pair. (b) A representative A-line showing the signal from the sample (tissue) and the calibration signal.

Fig. 3.
Fig. 3.

A typical measured phase (a), phase difference (b), and corrected phase difference (c) for a sample signal at depth Z=0.54.

Fig. 4.
Fig. 4.

The measured (circle) and predicted (solid curve) phase noise as a function of the sample signal SNR (Xs) at depths (a) Zs=0.07 and (b) Zs=0.84. The individual contribution to the overall noise resulting from only the sample signal noise (dash-dot curve) and calibration signal noise (dashed curve) are also shown. In both cases, the calibration signal was located at a depth Zc=0.96 with Xc ~31 dB.

Fig. 5.
Fig. 5.

Images of Intralipid flow through an 800 µm tube immersed in stationary Intralipid. (a) Structural image. (b) Flow image. The transverse distance is 3 mm and the imaging depth is 2.6 mm in air. Each image comprises 2000 A-lines.

Fig. 6.
Fig. 6.

M-mode image showing depth-resolved Intralipid flow as a function of time for high-rate, pulsatile flow. The beam was positioned at the center of the tube (see arrow in Fig. 5). In (a), the measured phase difference is shown without unwrapping phase discontinuities. In (b), a phase unwrapping algorithm is used to reconstruct the flow. Note the difference in scale between the images. In (c) the flow profile at time T (indicated on the time axis) is plotted. The maximum flow in (c) induced a phase difference of -8.5π corresponding to a flow rate of 191 mm/s.

Fig. 7.
Fig. 7.

Images of human finger near the nailbed. Fig. 7(a) shows the structural image and 7(b) shows the flow image. Two blood vessels (circled) are clearly visible in the flow image. The transverse dimension is 3 mm and the depth is 2.6 mm. Each image contains 2000 A-lines.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

σ Δ ϕ 2 = ( 1 X ) .
S ( t ) R cos ( 2 k o z + 2 α z [ t + ε ] )
Δ ϕ = 2 α z Δ ε 2 α z T cl π Z .
Δ ϕ ̂ i , j = Δ ϕ i , j ( i m ) Δ ϕ m , j .
σ Δ ϕ ̂ 2 = ( 1 X s ) + ( Z s Z c ) 2 ( 1 X c )

Metrics